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The purpose of this research l to study the phenomena .of

multiple quantum processes and to consider possible applications. These

processes involve the interaction of more than a single quantum of radia-

tion with an atomic system and are nonlinear in character. An equation

of motion approach is used in the solution of the quantum.mechanical

problem, allowing the calculation of the observable quantities important

for the radiation processes considered.

Th ee cific cases have en cýsidered. In the first' third

harmonic ene ion is pred ted for a ta-level quantum syst .The

magni de of the nonline ity and the magn, e of the thi harmoic

pow generated ar e uated in terms of kn paramet a of the qu. tum

s stem and its sur dings. A shiM of the na al. ransition freque

of the quantum tem also preicted. In the cond case, the same

two-level : em is foun to ve rise to a f of arametric effect,,

suitable or amplificatio The thresholyAonditions r parametric

osci ion are found ,te of the own properties o the system.

e hird case cons ered was t t a three-level system. Its properties

a. a frequency cverter were p ed out and a detailed at of second

h ic gen tion was perf d, th he nonlinearity and se nd

harmon er evaluated terms of eknown properties of the s im.

Of part ar interest as the predicti tho.t, the optimum harm c

gene tion curr 5Ahen two of the three ansitions ivl differ

fr degener one linewidth. 7
Two expe' ts were perform. In the fi t,' third harmonic

eneration . en predicte y the theory was erved. The res

othe e riment we in r agreement with th ry. In th econd

e iident the secon monic generation p oninnonpre icte. y the

thec was observedid w found to be general agree -with theory

within e experimental uncertainty. /
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From the results of this research it is thus concluded that a

quantum mechanical systeul possesses nonlinear as well as linear properties

and that these nonlinear properties may find application, especially in

the sub-millimeter and optical regions where suitable nonlinear elements

do not presently exist.
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IAmm I

IM0RDUaIN

A. BACXM D

In 1955 Gordon, Zeiger and TownesI announced the successful operation

of the ammonia beam maser. With this pioneering breakthrough the field

of quantum electronics had its beginning. The achievements in this field

have been many, starting with this first ammonia maser and including the
2

solid state microwave maser, proposed by Bloembergen and successfully

operated by Scovil, Feher, and Seidel,3 the optical maser proposed by
Schawlow and Townes• and operated by Maiman 5 in a solid, and by Javan6

in a gas, and most recently, the successful operation of a semiconductor

Junction laser. 7 "9

The field of quantum electronics differs from its predecessor, classical

electronics, in that it makes use of the internal, quantized energy states

of an atom or molecule rather than the translational states of electrons.(2)

In general, efforts to date in the application of these properties have

been concerned with producing amplification and oscillation using the

phenomenon of stimulated emission from an atomic system which is in an

inverted population state.

A study of the interaction of radiation with matter forms the basis

for the analysis of these quantum electronic systems. Such a study must

be quantum mechanical in nature in order to account for the discrete nature

of the atomic system. The phenomenon of amplification by such a quantum

system is a linear process and can bc described as a preponderance of stimu-

lated emission over absorption. Such a linear process is microscopically

describable as the interaction of a single photon with the atomic system

while macroscopically, a complex susceptibility, independent of the field

strength, may be used. The latter description gives a complex polarization

or magnetization proportional to the applied field.

()The words atom or atomic system are used to mean atom or molecule.
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Nonlinear Effects

In addition to the linear, single quantum processes important for

maser theory, there exist higher order processes involving, on a microsscic

scale, the interaction of more than a single quantum of radiation with the

atomic system. Macroscopically these interactions are found to be described

by a polarization or magnetization which is dependent on quadratic or higher

powers of the applied radiation field. This nonlinear dependence on the

field makes possible such phenomena as harmonic generation, parametric

amplification, limiting, modulation, demodulation, and other fiequency

miring effects.

The research described in this report is concerned with a study of

these nonlinear phenomena. Because of their nonlinear character and quartum

mechanical aspects they. will be called nonlinear quantum effects. They may

be further classified as bulk nonlinear effects since the phenomena are

not connected with either a surface or a junction as, for example, in a

semiconductor diode.

Although nonlinear phenomena have found general application in

various fields of science and engineering, little, if any, use has been

made of the bulk nonlinear phenomena considered here. In the region of

the spectrum from dc to microwaves the nonlinear properties of diodes,

varactors, and electron beam have had the most applications. This

results both from the fact that such systems have strong, relatively

frequency-insensitive nonlinearities and that these nonlinearities are

easily describable in terms of familiar concepts.

The bulk nonlinearities of the type considered here, on the other

hand, are generally smaller iin magnitude, frequency-sensitive, and are

described in a less familiar manner than their classical counterparts.

With the host of presently available, strong, nonlinear elements, the

question might be asked as to the purpose of studying these nonlinear

phenomena. Two main reasons can be offered. First of all, such a study

would contribute to a further understanding of phenomena associated with

the interaction of radiation with matter. Of particular interest is the

study of radiation processes where atomic coherence effects, imposed by

strong fields, become important. A second reason comes from the point of

view of applications. Although the nonlinear properties of the presently

- 2 -



used diode, etc., are relatively frequency-independent below the microwave

range, their efficiencies do fall off with increasing frequency above this

range. Thus applications in the submillimeter to optical frequency ranges

are marginal, if possible at all.

The bulk nonlinear properties described in this report are found to

depend on the natural transition frequencies of the atom. Since atoms

exhibit resonances throughout the electromagnetic spectrum these nonlinear

properties will also occur throughout the spectrum. Further, it is shown

in this report that the magnitude of the nonlinearity is, among other

things, dependent on the Boltzmann factor and increases in magnitude with

increasing frequencies. Thus at high frequencies these nonlinear effects

may be expected to play an important, if not dominant, role.

Scope of the Problem

The purpose of this research is to study these nonlinear effects and

to consider possible applications.

The first task in a study of these nonlinear effects is to find a

method of formulation of the problem. Such a formulation should be valid

for the large field strengths encountered in exciting the nonlinearities

and must be capable of predicting coherent emission as well as absorption

for the higher order processes. For such an analysis the usual approach

of time-proportional transition probabilities and instantaneous quantum

jumps between unperturbed energy states, used in solving maser problems,

is not applicable inasmruch as the assumptions implicit in the derivation

of the method are not valid. In particular, the assumption of weak field

strengths used in deriving the time-proportional transition probabilities

is not valid.

From such an analysis we should like to be able to evaluate the magnitude

of the nonlinear effect in terms of known or measurable properties of the

system such as natural frequencies, linewidths, and matrix elements. The

effects of temperature, concentration and population should also be

considered.

Finally, possible applications of these nonlinear phenomena should

be considered. Included among these considerations should be the effects

of the material's surroundings, whether a cavity resonator, propagating

circuit, or free space.

"- 3



The results of the research described in this report may be summarized

as follows:

1. A study has been made of the interaction of a radiation field with

an atomic system using an equation of motion formulation including the effects

of ,'elaxation. This approach directly relates macroscopic, observable

quantities to their microscopic sourqes, predicting nonlinear effects as

well as linear ones. The effects of atomic coherence are included, and

the formulation is valid for large as well as small field strengths. From

this analysis various nonlinear effects may be predicted and their magnitude

may be calculated in terms of known parameters of the system.

2. Detailed theoretical analyses have been carried out for three

specific cases.

a. Harmonic generation in a two-level system. From a consideration

of the interaction of an applied radiation field with a two-level electric

dipole system, third harmonic generation is predicted.10 Two values of

the frequency of the applied radiation field are found which result in a

strong effect, namely when applied frequency or its third harmonic is

near the natural transition frequency of the atom.

A shift of the natural transition frequency due to the strong rf fields

is predicted from the theory. This shift is the electric dipole equivalent

of the Bloch-Siegert shift predicted by Bloch for the case of magnetic

resonance.

The magnitude of the induced third order polarization is calculated

in terms of the known parameters of the system and the power generated by

such a means is calculated, assuming a resonant cavity structure. The

magnitude of the nonlinearity is found to be independent of whether or not

the system is in an inverted population state, although population inversion

is found to alter the efficierncy through a modification of the source

impedance. The dependence of the nonlinear effect on other properties of

the atomic system is also considered.

b. Parametric effects in a two-level system.12 Parametric oscillation

ang amplification are considered for a two-level electric dipole system.

The frequency conditions for such an effect are that the pump frequency

be equal to one-half the sum of the signal plus the idler, where the idler

may be either a cavity mode or the interral transition of the molecule.

- 4 -



An analysis is carried out for the latter case and the start-oscillation

condition is evaluated in terms of the parameters of the atomic system

and the surrounding cavity.

c. Harmonic generation in a three-level system. A three-level

system in which two natural. frequencies are nearly degenerate is found

to present a nonlinearity suitable for second harmonic generation. Second

harmonic generation is predicted and its magnitude is evaluated from the

general theory. Of particular interest is the prediction that the effect

will occur not when the transitions are degenerate but when their values

differ by a frequency corresponding to one linewidth. This second harmonic

generation effect predicted by the theory was subsequently observed by

Kellington 1 3 and independently by the author.

3. Two experiments at microwave frequencies have been performed to

verify various aspects of the phenomena predicted by the theory.

a. Third harmonic generation in a two-level electric dipole system14
was observed using ammonia gas. The fundamental and harmonic frequencies

were 8.5 kMc and 25.5 kMc, respectively, and the inversion transition at

24 kF1c was the two-level system. This experiment provided a direct con-

firmation of the effect predicted by the theory and gave results in general

agreement with the theory.

b. The phenomenon of second harmonic generation in a three-level

system was observed using the paramagnetic resonance levels in the ground

state of ruby. This effect was independently observed and reported by

Kellington,13 who also used ruby under approximately the same operating

conditions.

B. BRIEF HISTORY OF THE S=DY OF MULTIPIE QUANTUM EFFECTS

Until recently, interest in the phenomenon of multiple quantum

transitions has centered on the study of these effects arising in various

types of absorption spectra. The first published reports on the observa-

tion of this effect came from the work of Kastler's15,1 6 group, resulting

from their study of the hyperfine spectrum of sodium. In their experiments

they observed the appearance of additional spectral lines not predicted by

the theory. These lines were present in the spectrum at high rf power

levels but were not present at low powers, while the frequencies of these

-5•-



new lines corresponded to the algebraic mean of adjacent predicted lines.

An example of the type of apectrum observed is shown in Fig. 1.1. In this

case the selection rule for the hyperfine transition is 4m = ± 1 , where

m is the magnetic quantum number. With further study they found that

the phenomenon responsible for these additional lines was a double quantum

absorption for which 4m = 2 . This absorption process occurred when the

applied frequency was equal to one-half of the frequency difference between

levels differing in m by two units. Physically this process corresponded

to an absorption of two photons with the system going directly from a level

m to a level m + 2 . Winter17 showed that the absorbed power for this

two-quantum process was proportional to the square of the applied power,

explaining the absence of the effect at low power levels.

In subsequent reports, Margerie, Brossel and Winter17'18 reported

three and four quantum absorptions as well as multiple quantum absorptions

involving combinations of two applied frequencies.

Other experimental results of absorption studies where multiple quantum

phenomena were observed have been described by Kush, 1 9 Hughes and Geiger, 2 0

21 22
Wolga and others. Sorokin, et al., found both double and triple quantum

absorptions in some of their paramagnetic resonance work on solids. In all

these studies the additional lines, due to multiple quantum processes, were

present only at high rf field strengths and in absorption rather than emission

spectra.

Theoretical studies of these multiple quantum absorption processes have

been done by Salwen, 2 3 Hughes and Grabner,224 and Winter.25'2 6 These studies

involve the use of time-dependent perturbation theory carried to higher

order and predict multiple quantum absorptions. None of these analyses,

however, considers nor predicts any form of emission related to or resulting

from these higher order absorptions. It is precisely this latter effect

which is responsible for such phenomena as harmonic generation.

Following the proposal and successful operation of the solid state

maser, detailed theoretical studies of maser action were made by Javan, 2 7

Clogston28 and Yatsiv.29 These discussions pointed out that the rate

equation approach, used in earlier analyses of the maser, failed to

describe some of the quantum mechanical aspects of the radiation process.

In particular they found that under some circumstances double-quantum

processes could play an important role in maser operation. Yajima and

- 6 -
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FIG. 1.1--Resonance curves obtained by Gagnac etal.
In the upper curve, for low power levels, the
four expected bm = ± 1 transitions are
observed. In the lower curve, for high power
levels, the three Am - ± 2 , two-quantum
transitions appear as the very sharp
resonances.
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Shimoda 3 -0• 2 observed maser operation where these double quantum processes

play the dominant role. Anderson3 3 and Suh13405 at the same time analyzed

the operation of two new forms of quantum mechanical amplifier, the reaction
field amplifier and the ferromagnetic amplifier, both of which operated

without the need for population inversion.(1) Along this same line a

proposal for a Raman maser was made by Javan3 and was experimentally

verified by Winper.37 The operation and analysis of these last three

devices is closely related to the subjects discussed in this report.

Recently there has been renewed interest in the phenomenon of multiple

quantum processes, this time in the optical frequency range. Franken,

et al.,3 8 generated optical harmonics. by focusing the out ut of an optical

maser on a piece of quartz. Giordmaine, 39 Maker, et al., and Terhune,
41et al., followed with other experimental results of harmonic generation.

Kaiser and Garrett, and recently Abella, have observed optical double-

photon absorption processes. Another form of nonlinear process, coherent

Raman scattering at optical frequencies, has been observed by research

groups at Hughes. 44,45 The microwave modulation of light has been46
accomplished by Kaminow, and others, using the electro-optic effect

which is another form of bulk nonlinear effect.

Theoretical treatments of some of these nonlinear optical phenomena

have been given by Braunstein,47 Bloembergenr4 8 ,49 and Kleinman. 5 0 ' 5 1  Of48
these, the paper by Bloembergen is perhaps the most thorough, discussing

these higher order effects from a point of view that shows the coherent

nature of the phenomena. The approach used by Bloembergen is, in many

respects, similar to that used by the author. The details will be

considered in following chapters.

The original suggestion for the use of these multiple quantu•m effects

to produce harmonic generation is due to E. T. Jaynes. 5 2 Jaynes pointed

out the generality and importance of multiple quantum effects and suggested

subharmonic pumping of a two-level system as a means of generating high

power levels at high frequencies. This suggestion of Jaynes provided the

initial incentive for the research described in this report.

(1)Although these devices have sometimes been included under the
broad heading of mascrs, their operation is essentially parametric in
nature.

-8-



CHAPTE II

THE INTENM ON OF RADIATION WITH NATTR

In this chapter we shall study the interaction of a radiation field

with an atom or molecule. A study of this type will form a basis for

analyzing multiple quantum or nonlinear phenomena as well as linear,

single quantum phenomena. Two approaches are presented. The first, using

the concept of transition probabilities, is developed to include both

single and double quantum absorption. The second is a macroscopic approach

relating the macroscopic properties of a material to its microscopic
properties.

A. RADIATION FPILD

In order to be rigorously correct the radiation field should be

quantized. However, if we are interested in large field strengths, corre-

sponding to large photon occupation numbers for the radiation fields, we

may consider the fields classically. In such an approach the field is
described by E and H , its electric and magnetic fields, or by its

vector and scalar potentials 6 and 0 . Use of this approach neglects

the effect of spontaneous emission, which will not be important for the
microwave frequency range but may play a role in optical phenomena.

B. ATMIC SYSTE

The atomic system must be considered quantum-mechanically. The equation

governing the behavior of the quantum system is Schr6dinger's equation

where 10r is the wave function of the system and A is the Hamiltonian.

If there are no applied radiation fields present, then the Hamiltonian

consists of the sum of the kinetic and potential energies of the atom.

"9-



We shall, for the time being, neglect the interactions between atoms themselves

(spin-spin) and between the atms and the lattice (spin-lattice). This

Hamiltonian is denoted X0 and has stationary eigensolutions In) and

corresponding energies Rn satisfying the equation

Io In) = En In) . (2.2)

We shall assume that these energies and their corresponding functions or

kets are known. The functions {In)} are assumed to be a complete set.

If we turn on the radiation field, then it will interact with the

atom and cause a change in the Hamiltonian of the system. The new

Hamiltonian may be written in the form

X = ÷• +, (2.3)

where is the term due to the interaction of the atom with the radiation

field. We shall be interested in the case where the perturbation results

from a time harmonic field or sum of such fields and hence we may write it

•• = • • ei~t * e'-

+eo +At) e (2.4)

The quantity • is real and the superscript ' refers to the particular

frequency present. For a given applied field, 4 is proportional to the

field.

The matrix element of an operator Q in the energy representation is

defined as

QM = (nIQIm) . (2.5)
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C. TRAMRSTION EBownpiL mm OF SOWTION

1. First Order Processes

In solving the radiation problem we assmne that the total wave function

is a superposition of the unperturbed eigenstates

•, -i Ent/ti

1*) = an(t) e E in , (2.6)

n

where an(t) is the coefficient of state n . Substituting (2.6) and

(2.3) into (2.1) gives

i '.k= aZ . i(Ek - En)t/A (2.7)

n

The general approach to the solution of this set of equations is to assume

that the frequency of the applied signal satisfies the condition W mi. - E
and that the system is initially in the state m , am(0) = 1 . If it

is further assumed that we consider the solution for times small enough

that the approximation am =1 , an *a , n i m , is valid, then we

have from (2.4) and (2.7)

/ ei(n - t

i h (2.8)

where a km = (Ek - E m)/ and the nonresonant term, involving the sum

frequency (Qkm + w) , has been dropped. Upon integrating (2.8) subject

to the initial condition ak(O) = 0 , we have

4 ei(nkm -0))t 1
ak(t) = " •(2.9)
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The probability of occupancy of state k is then given by

1j12 = I•2 sin2 (n= - W)t/(,2 km )2(.o

If we assume that the final atate is not well defined but rather is given

by a density of final states, then in order to find the probability of a

transition to one of these states we must integrate over the density of

final states. We shall assume that the final state is not sharp on account

of line broadening and that the density of final states is given by a line

shape fun'tion g(v) , where

f g(v) dv= . (2.11)

0

For a Lorentzian line we have

22 T2
g(V) = + 2 2(v.v) 2  (2.12)

where T2  is the spin-spin relaxation time.53 The probability of finding

the system in one of these states is given by

00

Prob. = f Ia(v)l g(v) dv (2.13)
0

If we further assume that the strength of the perturbation is small, then

we can find a time t large enough that

sin2 (0 - )W/2 At

2 ~--(5 - t) (2.14)
2-
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consistent with the assevption that at the time t , a(t)l • 1
By combining (2.10), (2.12), (2.13), and (2.14) and integrating, we have

s2 !m

The transition probability per unit time is given by

m k2 2 T 2 (2.16)
mk .2 + 2 )2

Since A is a Hermitian matrix, we have X = * , andink km

W= =W• (2-17)

thus stating that the probability of the system going from k to m is

the same as its going from m to k . If we assume that Ek > Em and

the number of atomic systems in levels k and m are nk and n ,

respectively, then the power absorbed by such a system is given by the

product (transition probability)(energy per photon)(net difference in

population)

Pas = (n " -n 1  wmk

= (nm)bm) - 12 2•T 2  2 (2.18)

If the macrosystem is in a normal population state, n - nk > 0 , then

the power absorbed is positive. Maser action occurs when an inverted

population is achieved, (nk - nm) > 0 , and the power absorbed is

negative, implying emission. This single quantum process is linear in

the sense that the power absorbed or emitted is proportional to the square

of the field and hence to the incident power.
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The assumption leading to the derivation of this relation are that

t << T2 in order that (2.14) be consistent with (2.12) and that

" t/l << 1 in order that lakI << 1 . Combining these gives the

relation

- < 1 • (2.1<)

If we look upon T2 as the coherence time of the atom (coherence being

disturbed by "collisions" occurring with a mean time T2 ) then (2.19)

states that (4/i)'i , which is a measure of the time it takes to cause

a transition, must be greater than the coherence time. In other words the

assumptions leading to (2.16) and (2.18) are satisfied only if the pertur'ba-

tion is weak enough so as not to introduce coherence effects in the atomic

system.

2. Higher Order Processes

The equations derived in the preceding section assumed energy conserva-

tion, w a nkm , and the absorption or emission of a single quantum of

radiation. These results may be extended to processes involving more than

a single quantum by carrying the calculation to higher order. These higher

order processes may involve quanta from different radiation fields or more

than one quantum from a single radiation field. In order to be definite

we shall consider the latter and calculate a double-quantum absorption

process. The important aspects of multiple quantum processes will be

evident from this specific calculation.

Let us assume, as before, that the system is initially in state m ,

am(O) = 1 . Then the equations for the ak , to first order, are given

by (2.9):

Sk(t) = -t -- (2.9)

* (5k - W)

w-14



I
eubstituting theme first order solutions into (2.7) gives, for ik to

second order.,

10 - ano)t
-i,, -(" . I I (2.20)

n ti(M - 3

where we have assumed that now 2c 2n •k and that the frequency w is

not near any of the natural resonances, Qkn and 0mn . Upon integrating

(2.20) under the above assumption and finding the quantity aki12 , we

have

1ak12 = [ 2- 2 -_,)/2 (2.21)
I km )

After comparing with the first order case, (2.10), we see that the expressions

are similar, with (n - a)) being replaced by (ak - 2p) and the matrix

element Nmk being replaced by the sum

Z mn n . (2.22)

n

By performing the integration over final states, we have for the transition

probability

1 [z A.' ] 2 2T2
W 'I-n n 2(a 2 (2.23)mk ,2 n i 1 +T 2 fl -n aM)

and for the power absorbed

Pab = (nm" nk 2W W= (2.24)

ab - 1k -



The important aspects of this double photon absorption, quantitatively

described by (2.23).and (2.24), may be seen by corsidering a single term

from the sum appearing in these expressions. This term describes the coupling

of levels m and k with the level n acting as an intermediate or
"virtual* state. The term virtual is used because the intermediate

state (quantum system in level n , radiation field with N - 1 photons)

does not conserve energy with the initial state (quantum system in level

m , radiation field with N photons). The amount by which energy is not

conserved is given by the energy denominator, i(n. - t) . The total

probability of a transition from state m to k involves a summation over

all possible virtual levels, taking into account the lack of conservation

of energy through the energy denominator.

The following conclusions can thus be reached regarding these two-

photon processes:

(1) There must be some intermediate quantum state n which is

connected both to the initial and to the final state. This state may be

a third level. or either the initial or final state itself. In the latter

case a term of the form 34 or Xkk would be involved.

(2) The strength of the effect will depend on how close the virtual

states come to conserving energy; the closer they are to conserving energy,

the stronger the effect. The second order effect will be of the order of

/(A (nm - c))2 times the first order effect.
(3), The power absorbed depends on the fourth power of 4 and,

since 14 is proportional to the applied radiation field, the power

absorbed is proportional to the fourth power of the field or to the

square of the applied power.

Second order processes involving two different frequencies and higher

order processes involving more than two quanta are considered in a similar

manner. The third order process, for example, will involve two virtual

states.

3. Ehamle

As an example consider a three-level system with unequally spaced

levels, (Fig. 2.1). Let the energy eigenvalues be E1 , E2 , E3 , and

define the natural frequencies a31 = (E3 - EI)/Y , etc. Let us further

suppose that there are matrix elements of the perturbation connecting

- 16 -



3

2

FIG. 2.1--Energy level diagram of a three-level system. First order
absorptions occur at fl and l . Second order absorp-
tion for 2w - 0 is Rown with3 j "virtual" level depicted
by the dotted liA.

Relative
Absorption

32 21

FIG. 2.2--Theoretical absorption spectrum at low rf power levels.

Relative
Absorption

321 21

FIG. 2.3--Theoretical absorption spectrum at high rf power levels. The
double quantum absorption appears midway between the two first
order absorptions., here shown saturated.
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I!• levels 1 and 2, and 2 and 3, but levels 1 and 3 are not directly connectedin first order. An observation of the spectrum of this system would, to

first order, give two lines centered at n1 and n32 as shown in Fig.

2.2. Levels 3 and 1, although not connected in first order, are connected

in second order via level 2. The power absorbed in this case, from (2.24),

is

2 22

= (n (2.25)
1 ' 2 1 ` Ti ( a 32  -

which shows a peak at 2m = (= 32 + 21) , or the algebraic mean of

the two first-order lines. This is shown in Fig. 2.3. From (2.25) we see

that although the double quantum absorption line always occurs at the

frequency w = 2 31/2 , its strength will depend upon how close to degeneracy

S32 and n21 are. Upon comparing this example with Kastler's original

work,(i) we see that this is precisely the effect he saw-.

We may summarize this approach by the following observations: First

of all, for the field strengths usually encountered in experimental

conditions the transition probability method correctly predicts single

quantum absorption and emission processes as verified by experimentation.

When carried to higher order, the theory predicts multiple quantum

absorption processes which have been experimentally observed. The

assumption on which the derivation is based, Eq. (2.10), does, however,

limit the general validity of the theory to field strengths satisfying

this condition. Further, it is not clear from this point of view how

a process such as the absorption of two photons at frequency W and the

coherent emission of a single photon at the frequency 2w would be handled.

Rather than pursue this approach further, we shall turn to the macroscopic

upproach, which avoids many of the problems inhereent in the use of tran-

sition probabilities~and which is used through the rest of this paper.

D. MACROSOMPIC APPROACH

We may begin a study of the macroscopic approach by writing down

(See Chapter I.
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Maxwell's equations in the presence of matter:

vx -- - vx,. 3 + , J (2.26)

7. =- D P , V. B= , (2.27)

along with the constitutive relations

S= E + •4i( , B = H + •f . (2.28)

The characteristics of the matter are embodied in the quantities P and

X , the polarization and magnetization, respectively. In particular,

the relations

P= -(E) , M = .(s) , (2.29)

define the response of the material to the applied fields.(I) If the

dependence is known, then a solution to Maxwell's equations may in principle

be found. It is generally assumed that X is proportional to E , and

M to H , giving the tensor susceptibilities, X and X
e m

P= XE , M=X= . (2.30)Se

From these susceptibilities the familiar dielectric constant and

permeability are defined as

SE = 1 + 4AX , =1 + 4AX , (2.31)
ie m

where now

~~ g= • • (2.32)

M'A more general relation would be '= (E, H) and , (E , H)•
We shall for simplicity assume the simpler relations, (2.29), where the
polarization depends only on the electric field and the magnetization depends
only on the magnetic field.
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The above relations form the basis for the solutions to Maxwell's equations

for the linear case.

It is more generally true, at least we may assume so, that the polar-

ization depends not only linearly on E but on higher powers as well. By

using a similar argument for the magnetization we may write these more

general dependences as

p x(1) E + X(2) E E + (3)E E E +- e e e E E .
(2.33)

X(l) H + X(2) H H + X(3)EH+ .R
M - m ~ m

where the new tensors are of higher order. (1) This more general constitutive

relation is seen to give rise to nonlinear effects. For example, if E

varies as cos cut , the term E E will have a component at the frequency

2w and through (2.28) and (2.26) radiation fields will be set up at the

frequency 2m.

Equations (2.26) through (2.33) constitute a description of the

macroscopic electromagnetic field for both the linear and nonlinear cases.

It remains, however, to determine the response of the medium to the applied

fields, Eqs. (2.29) or (2.33). In particular we should like to determine

this response analytically from the microscopic properties of the atomic

systemas making up the medium. The basis for such a calculation follows

from the relations

P-- , M = , (2.34)

where P and M as before are the macroscopic polarization and magnetization,

N is the number of atoms per unit volume and • and m are the average

or expectation values of the polarization and magnetization per atom.(2)

The average implied by the double bar constitutes both a statistical

=()For example, the second term in the expansion 5r P would be
p (2) =Xj E Ek and the third term would be P JkEjXEk "

(2)See J. H. Van Vleck, reference 54, for a proof of this relation.
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average and a quantum mechanical average, the latter coming as a result

of the inherent statistical nature of quantum phenomena. The problem

thus is reduced to a quantum statistical evaluation of • and m in

response to the radiation fields present.

E. EVAUXATION OF THE MACROSCOPIC PROPITISS: THE DENSITY MATRIX APPROACH(I1)

The density matrix formulation provides a direct means for formulating

quantum statistical problems. The density matrix may be characterized by

its equation of motion,

S-- p] + ýj (P _ pe) , (.35)

and the prescription for finding the expectation value of an observabley,(2)

(Q) = Trace (pQ) (2.36)

In these expressions p is the density operator, 34 is the total Hsmiltonian,

pe is the value of p at equilibrium, and - is the relaxation time

associated with the return to equilibrium. The value of T will depend

on the particular element of the density matrix considered. In general,

when using the energy representation, T may be divided into longitudinal

or spin-lattice relaxation times associated with the diagonal components

of p and transverse or spin-spin relaxation times associated with

the off-diagonal components of p . The longitudinal relaxation times,

usually denoted by T1  , describe the characteristic time in which

the spin system and the lattice reach equilibrium with each other.

This process involves the exchange of energy between the spin system

and' the lattice. The transverse relaxation times, usually denoted by

T2  " describe the characteristic time in which the spin system reaches

equilibrium within itself. This relaxation process is important in determining

ý1 )For an alternatiye approach to this calculation see Sloer, 5 5 Chapter
6,pp. 154-157, Kramers, 51 Chapter 8, pp. 480, and Bloembergen. Briefly,
this method involves a calculation of the perturbed wave function due to the
applied fields and the evaluation of the polarization and magnetization from
these wave functions. This method assumes, however, that the frequency of
the radiation field is not near any natural transition frequency and hence the
field causes no transitions. The method used here is not limited by this
assumption.

(2)These relations are derived in Appendix A.

- 21 -



the effects of coherence in the atomic system. In Eq. (2.36) the trace is

taken of the product of the matrices defined as

I r = (njpIm) (2.37)

Qn (niQIm) , (2.38)

where In) is any complete set of functions. It is usually found convenient

to define this set of functions as eigenfunctions of the unperturbed

Hamiltonian, 0 , where

401n) = Enn) . (2.2)

In this representation the time average value of the diagonal terms, p nn

when normalized such that E p = 1 , may be interpreted as the probability
n nn

of occupancy of level n . The off-diagonal elements, pnm , are

interpreted as giving a measure of the amount of coupling between levels

m and n , where the coupling is proportional to the magnitude of the

element. The procedure for finding the values of the observables is first

to solve the density matrix Eqs. (2.35) under the particular conditions

of the problem. From this we have a knowledge of all the elements p.

The magnitude and phase of an observable quantity is dependent on the

elements of p through (2.36) and is generally dependent on both the

diagonal and off-diagonal components of p

(Q) = Pnm Qm

mn

(2.39)

Pnn Qnn + 2 nm P mn
n n

min

The matrices of the observables are assumed to be constants, independent

of time, and hence the time dependence of the observable is found from the
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* time dependence of p . by examining the equations of motion for p ,

we can see what the time dependence is, and in particular ye can see how

linear. and nonlinear processes arise.

Let us write Eq, (2.35) in matrix form in the following way:

n m

""ls pnn)+ Y ip - pP ) (2.40)

nn T nn nn OA t. - P

n#m

iA6 + (E -E•.)p= + i--M (prm - Pn)

(2.41)

+ P= rm(nn + OA * M-Pr t
mm 

M

From these equations we can see first of all that the "natural frequency"

of the diagonal components is zero while for the off-diagonal term Pnm

it is (Em - En)/i . Clearly a given component will be most strongly
driven when the frequency of the driving term is near its natural frequency.

1. Linear Effects

Direct coupling of levels n and m occurs via the term ,n-(Pmm - Pn)

and is strongest when varies with time as exp i(Em - En)t/ii . As

a result of the direct coupling term, pMn is proportional to •Nm and

hence to the applied field. Evaluation of an observable through Eq.

(2.39) also gives a linear dependence on the applied field. Hence the

direct coupling terms are seen to give rise to linear effects, among

which are those described in Eqs. (2.32).

2. Nonlinear Effects

In addition to these direct coupling terms there are additional terms

of the form 3A Ptm which describe the indirect coupling of levels n

and m via level -t . Theee terms include the right hand side (rhs)

of (2.40) and the last two terms on the rhs of (2.41). A term of this
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form describes the fact that if levels .t and m are coupled, P.6 A 0 ,

and if 4 is also coupled to n p X A 0 , then n and m will also

be coupled. If ptm is proportional to X& p then pnM is proportional

and hence an observable dependent .on p will be quadratic in the

applied fields. A term of this form thus gives rise to a nonlinear de-

pendence on the field and accounts for the second term in Bq. (2.33). If

is nonzero because of indirect coupling to some level q ,

then p M is proportional to Wn lqm and is thus a third order

quantity in the radiation field. An observable dependent on Pt. would

thus be proportional to the cube of the field and would give rise to third

order nonlinearities.

We thus see that, in this particular formalism, nonlinear effects

are handled by means of a consideration of indirect coupling mechanisms.

Processes of any order may be handled by this means.

The usual method of solution of such a problem may be summarized as

follows:

(1) For the particular problem at hand allow for all the radiation

fields which are present by including appropriate terms in the Hamiltonian.

(2) Assume solutions for the components of the density matrix of the

form of harmonic series of the frequencies present.

(3) Find a steady state solution by equating terms with the same

time dependence. This results in a set of algebraic equations which are

then soluble by standard methods. In practice, simplifications can

usually be made which will make these solutions easy to obtain.

Once the density matrix is found, then through (2.34) and (2.36) the

macroscopic properties are known and Maxwell's equations (2.26) through

(2.29) may be solved under the particular conditions of the problem.

These equations then form a self-consistent means of solving the general

radiation problem.

3. Examples

Let us briefly consider two examples using the density matrix approach.

a. Spin 1/2 System

Assume that a spin 1/2 system is in a dc magnetic field and that the

natural frequency of the transition is given by (E2 - E1 )/h = a . Choose

the representation to be the one in which S and S are diagonal,
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vhere the matrices of the x and z components of the magnetic dipole

operator are

If an rf magnetic field C o t is applied in the x-direction, then

the interaction Hamiltonian is

S"" x R, Cos G , (2.43)

and hence the nonzero matrix elements of ( are

PH, = Cos wt (2.44)1 21

Substituting (2.44) into (2.40) and (2.41), using the longitudinal and

transverse relaxation times, TI and T2 'defined in Appendix A,

and employing harmonic balance gives the following solutions for p

-i T2 g H (po - p') e'P12 = .1 2 (2.45)
211 (1 - iT28)

P21 = PI2 (2.46)

(P -0. p0) I T2 [sin 2mt + T28 cos 2at]
Pll�l l -n21 2 2  52) (2.47)

P2 - p11 (2.48)



and

e e

P1 1 P 22
t 0 0 (2...

Pl+ T 1 2  2 1, (2.9)

where

CD =(2.50)

e e
The quantities p and p2 are the thermal equilibrium values of p

while Pll and p2 2  are the dynamic equilibrium values or the average

values with the rf fields present. Equation (2.49) thus describes the

effects of saturation. From (2.39), (2.42), (2.45) and (2.46) we find

the expectation value of the x component of the magnetic dipole moment

(gx)= P (P1 2 + P2 1 )

2 0  0

1 211 22 (sin at + T2 8 cos WO). (2.51)

11(1 + Ti 2

The power absorbed is given by

Pabs = (AxI H1  "' })time average

= (P11o - 0 1+ 2 T 2 (2.52)11 22) Tl+ (a )

By multiplying by the number of particles N and noting that N(Pl - p02 )

= nI - n2  , we see that (2.52) is the same as (2.18), calculated by

transition probabilities, where W1 = pI/2
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If we now evaluate (pz) , the expectation value of the z-component

of the dipole moment, we find from (2.39), (2.42), (2.47) and (2.48)

"Az = (Pll "22)

(2.53)

g= O - P2 0 tl~l + 2 82)A (a %si 2t + T28 Cos 2wt)

11 2otj~ + T2o ,2_2

which shows a dc component as well as a component at the frequency 2w

This component at 2w comes as a result of the indirect coupling of level

1 to itself in second order via level 2, and similarly for level 2 via 1.

When this latter component of gz is introduced into Maxwell's equations
it will give rise to radiation fields at the frequency 2w , an effect

not predicted by the method used to derive Eq. (2.18). Hence we see that
the density matrix formulation gives a more general approach, giving more

information than do transition prQbabilities.

b. Three-level System

For the second example let us consider the three-level system

previously discussed in section C.2, this time using the density matrix

approach. To be definite, let us assume magnetic dipole transitions and

an applied field HI cos &t . The nonzero perturbation terms are

1
N12 H, "CosLt

A21= 2 H coswC

(2.54)

)23 " 2 3 H cos wt

32 " 32 H cos Mt
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By assumýng that P12 a -12 e pt -P2 - e it 1 el•A

then to first order we have the aolutons

(p•. ohL 2 H

2 [(n 21 - w) + i/T2 (

12 =~ 22 - 3) L3 (2.56)
-23 2[ (0 3 2 - CD) + i/T 2]

and

X13 0 , to first order • (2.57)

A calculation of the magnetic moment using these values would predict

first order absorption at co = 021 and w = a32 . By keeping second

order terms we find that levels 1 and 3 are coupled since level 2 is

coupled to both 1 and 3 in first order. Simplifying the exact expression

somewhat by assuming that (n12 - W) >> l/T 2  and m =31 gives

i 'r12 l2 •23 o (2.58)
13 32 5 (33 " , (.)

where 5 = a21 - tz . Finally, using this value for 113 , we find that

>12 and "23 take on nonzero third order terms. In the case of 112

this occurs as a result of the fact that levels 1 and 3 are connected

(in second order) and 3 is in turn connected to 2. A similar argument

applies for 123 . These third order terms are

iT AH
3

" -- 823(3 (2 -33 -1 (2.59)

(1)See Chapter V for a derivation of these equations and for a more

detailed explanation of this problem.
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and

i T2 ~132 "~21 "L23 H? -P

23 ~ 8 ~ ~ 1J (2.60)23 = 8h3 52 33 1

where the time dependence is still e . Calculation of the magnetic

moment from the relation

S= 
(P12 21 21 P ) + (42 3  P32  + P3 2 3 ) ' (2.61)

and subsequently evaluating the power absorbed, gives Eq. (2.25) where we

have set 2a = n31 " Thus not too unexpectedly we arrive at the same

answer as was given by the transition probability method. One important

point can be made, however. If the selection rules for the transitions

were such that 413 was not zero, then from (2.39) and (2.58) we immedi-

ately find a nonzero component of magnetization at 2w and, as mentioned

before, this will generate radiation fields at the new frequency. A more

detailed analysis of this particular case is given in Chapter V.

F. GENERAL ASPECTS OF NONLINEAR QUANTUM EFFECTS

From the formulation of the problem presented above we can draw

some general conclusions about the various nonlinear effects which are

possible.

a. The strength of the nonlinear effect measured by the magnitude of the

nonlinear polarization or magnetization will be proportional to the

magnitude of the higher order components of the density matrix. These,

in turn, will involve combinations of first order terms in the density

matrix. Hence the higher order effects will, in general, be large when

the corresponding linear effects are large. The latter are found to be

largest when the matrix elements connecting the various levels are large

and when energy is nearly conserved, i.e., when the applied frequency is

near a natural transition frequency (if the applied 3ignal is resonant

with a natural frequency then the strength of the transition is inversely

proportional to the linewidth of the transition). We then see that
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nonlinear effects will be strongest when the frequencies of the radiation

fields are near the natural frequencies of the transitions involved and

when these transitions are strong. The dependence on the proximity to

natural resonant frequencies points out the fact that for a given material

the nonlinear effects will be frequency-sensitive. This is in contrast

to a diode, for example, where the nonlinearity is relatively frequency in-

sensitive.

b. In general, the higher the order of the effect (the larger the number

of photons involved), the smaller is the magnitude of the effect. In

practice second and third order nonlinear effects will probably find the

most application.

c. The total energy of the field and atomic system must be conserved in

the overall interaction. This may be achieved either by the radiation

field and the molecule separately conserving energy, or by an increase

in energy of one system being compensated by a corresponding decrease in

the energy of the other. In the latter case the change in the energy of

the quantum system must correspond to the difference between two of the

eigenenergies E , defined in (2.2).n

d. The type of nonlinearity, i.e., whether even or odd and the number

of photons involved, depends upon the number of levels involved and on

the selection rules for the pertinent transitions. The selection rules

are, in turn, determined by the symmetry properties of the atomic system

and its surroundings. For example, if a crystal has a center of inversion,

then only odd order effects due to electric dipole transitions are allowed.38

e. In any nonlinear effect there will in general be contributions to the

effect from many combinations of levels. It may be the case, however,

that the contribution of two or three of the levels dominates, in which

case the essential properties may be found from a consideration of the

simpler two- or three-leyel system.

G. EXAMPLES OF NONLINEAR EFFECTS

We may consider briefly some of the more important effects possible

in two- and three-level systems. Some of these effects are considered in

detail later in this report, some are considered by other authors, and

some have not yet been investigated.
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1 ~1. Two-level &avt
a,~ HarIi14G.eneration

From an examination of the density matrix Eqs. (2.40) and (2.41) for

the specific case of a two-level system, it can easily be seen that the

off-diagonal components contain only odd powers of the applied field, while
the diagonal components contain even powers. From (2.39) we see then,

that if a dipole moment, which may act as a source of radiation, has

diagonal components, then generation of even harmonics is possible,I
whereas if it contains only off-diagonal components, then, only odd
harmonic generation is possible. The question of diagonal and off-diagonal

components of the dipole is determined by the type of interaction (magnetic

or electric dipole) and upon the symmetry of the Hamiltonian. Second
harmonic generation is briefly discussed in part E.3 of this chapter and
third harmonic generation is considered in detail in Chapter III.

b. Parametric Processes

There are several types of parametric processes possible in a two-
level system. They may be separated into two classes depending on whether

the dipole operator possesses a diagonal component (gil or g 2 2 ) , or

not.

If the system possesses either a g or a g22 then the two processes
shown in Figs. 2.fajid 2.5 are possible.

E2

FIG. 2.4--Parametric process with three frequencies preec~nt;
;Ai or p nonzero.
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E2~

Ei

FIG. 2.5--Parametric process wiLh two frequencies present;
Vll or 22 nonzero.

In the first, shown in Fig. 2.4, a strong field is applied at the

frequency wl , and two radiation fields at frequencies 02 and 0'3

are generated by the nonlinear action. This is a threshold effect and

requires al = a)2 + w3 in order to conserve energy. Such a system is

essentially considered by Suhl. 3 5  The second effect, shown in Fig. 2.5,

involves only two radiation fields, at a and co2  , and is usually

referred to as a Raman effect. From section F above, we have 0-= 02

+ (E2 - EI)/h . Neglecting the effects of spontaneous emission, this is

also a threshold effect. Javan has considered this as a form of Raman
36

maser.

For systems with a dipole moment containing off-diagonal components

two parametric processes are also possible and are shown in Figs. 2.6

and 2.7.
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E,7

FIG. 2.6--Parametric process with four frequencies present.

E 2  
a4

F~-1

FIG. 2.7--Parametric process with three frequencies present.
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In the first, Fig. 2.6, four radiation fields are present, their

frequencies satisfying Ca• + 42 o D3 ý+ 4 . Here, for example, fields

applied at ci and oD will generate fields at w3 and a) when the

magnitude of the applied fields exceeds a threshold value determined by

the parameters of the problem. In the second case the quantum system

resonance replaces one of the radiation fields and the frequencies must

satisfy a + 0)2 = w3 + (E2 - El)/ ." This is also a threshold effect

with a field at w 3 generated when the fields applied at 2i and '2
exceed a given threshold. In the last two cases considered it is possible

for ml to equal cu2  , reducing the actual number of fields present.

The second of these effects is considered in Chapter IV while the first

has not been considered in the literature.

In the case of the two-level system we find that the presence of a

diagonal component of the dipole operator allows processes involving one

lees radiation field than for systems with only off-diagonal matrix elements.

This may be seen by comparing the processes described by Figs. 2.4 and 2.6

and those shown in Figs. 2.5 and 2.7.

There are several possible applications of these parametric effects.

As in the case of classical parametric systems, these quantum systems may
act as amplifiers when operated below threshold and as oscillators when

operated above threshold. The two cases shown in Figs. 2.5 and 2.7 have

a slightly different character than classical parametric effects. Here
the quantuw. bystem acts as the "idler," removing the necessity for providing

an electro,-e- netic field at this frequency.

2. Three-level System

The number of nonlinear effects possible in a three-level system

exceeds those possible in a two-level system as a recult of the additional

number of combinations of levels possible. We shall thus ppý,ct out only

some of the important possible applications. The first is a tlree-

frequency mixing process, shown in Fig. 2.8.
3

OV M

FIG. 2.8--Three-frequency mixing process;
1' 923 ' •13 all nonzero.
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Here, the application of any two frequencies, oi ' 02  or (j3
where i + 'D2 = 03  , will generate fields at the third frequency if

all the transitions are allowed. A special example of this is the case

in second harmonic generation where w1 = 0'2  , considered in Chapter V.
Such a mixing process could also act as an up- or down-converter.

The reverse of this process, namely where fields at CD3 are applied

and parametric oscillations at a2 and a1 occur above a given threshold,

has been considered as a form of amplifier by Anderson. 3 3

27 30-32
Javan, and Shimoda and Yajima have considered a process similar

to that of Fig. 2.8, in which only two radiation fields are present. This

is shown in Fig. 2.9 where now a) = a 2 + (E2 - EI)/h and only the 1-3

and 2-3 transitions need be allowed. This effect is very similar to that

considered in Fig. 2.5 where now the coupling to the third level replaces

the self-coupling (gII or g22 . This is also a type of Ramna effect.

E 3

E 2

FIG. 2.9--Parametric oscillator; gl13 and "23 nonzero.

Finally, let us consider the three-frequency process shown in Fig.

2.10.

3 --

FIG. 2.10--Three-frequency parametric process; g 1 2  and A23 nonzero.
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Here it is assumed that there exist nonzero dipole moments connecting

levels 1 and 2 and 2 and 3. The application of radiation fields at
and u ' will cause a field to be generated at the frequency G , when
the level of the applied fields exceeds a given threshold. If 0 ='

then this process is seen to provfde a form of parametric amplification

where the pump frequency is near that of the signal. This has not been

previously considered.

H. saUARY

In this chapter nonlinear as well as linear effects have been discussed

and their analysis has been presented from the transition probability and

density matrix points of view. The latter approach is the more general

and is best suited for the types of problems where multiple quantum

processes are involved. The nonlinearities encountered make possible

harmonic generation and various forms of parametric processes which may

be used for amplification and mixing.

Since the natural frequencies of atoms extend from radio frequencies

to optical and above, these forms of nonlinear, multiple quantum effects

will similarly occur throughout the spectrum. The transitions involved

may include parsmagnetic, rotational, vibrational, and electronic energy

levels.
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I
CHAPTER III

THEORY OF THIRD HARMONIC GEERATION

IN A TWO-LEVEL QUATM MECHANICAL SYSTEM

In this chapter we shall consider the theory of third harmonic

generation in a two-level quantum mechanical system. Such a system may

consist of only two levels as in the case of a spin 1/2 magnetic dipole,

or a particular pair of levels in the case of a more complicated atomic

structure. The classical interpretation of the problem is presented

briefly, followed by a detailed quantum mechanical analysis in which

various aspects of the interaction are discussed. The results of the

analysis will be applied to the specific case of third harmonic generation

in a gas where the inversion transition in NH is used as an example.

A comparison of these predictions with the experiment performed on

NH3 are presented in Chapter VI.

A. GENERAL CONSIDEWRAIODIS

The problem to be examined is the interaction of an electromagnetic

field of frequency a) = 2xv with a quantum mechanical system consisting

of a pair of levels with energies E1 and E2 and a natural frequency

S= (E0 - EI)/t . Such a process may take place via either an electric

dipole or magnetic dipole interaction (electric quadrupole and higher

order interactions will not be considered) and the order of the interaction,

i.e., the number of photons involved, will be determined by the type of

interaction involved. These may be summarized as follows:

1. Electric Dipole Transitions

a. Induced Electric Dipole

When the interaction is pure electric dipole in character, provided

neither the upper nor lower state possesses a permanent dipole moment,

then only odd order interactions may occur, i.e., only an odd number of

photons may be absorbed or emitted. This type of interaction will occur

when each state has either even or odd parity.
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b. Permanent Blectric Dipole

If either of the states possesses a permanent dipole moment or a de

electric field is applied (creating a permanent electric moment via a

mixing of states) then even order interactions are allowed as well

as the odd order ones. Permanent moments may exist when a state has neither

even nor odd parity.

2. Magnetic Dipole

If the transitions between states are due to pure magnetic dipole

interactions, then three possible situations may be considered:

a. Hrf Perpendicular to Hdc

If the rf magnetic field is orthogonal to the dc field (assuming a

free spin and no crystalline fielAs) then the only transitions which are

allowed are of the form Am = ± 1 , where m is the magnetic quantum

number. In order to go from one level to the other, a net change in m

of 1 is required. This is seen to occur only when an odd number of

photons is involved.

b. Hf Parallel to Hdc

When the rf magnetic field is parallel to the dc field, the photons

carry no angular momentum. In this case, no transitions are allowed between

states which have different m values.

c. Hrf Arbitrary Relative to Hdc

With the rf field in an arbitrary direction, it may be divided into

components parallel to and perpendicular to Hdc ; these photons carry

0 and ± 1 units of angular mgaentum, respectively. Transitions between

states can then occur with any number of photons.

The phenomenon of second harmonic generation involves the absorption

of two photons and the emission of a single photon at twice the frequency.

From the discussion above, such a process is seen to occur in either a

magnetic dipole system of type (2c) or in an electric dipole system

possessing a permanent dipole moment (lb). Third harmonic generation may

occur in magnetic cases (2a) and (2c) and for either electric dipole case.

For the two-level system, the electric dipole transitions have the

distinct advantage over their magnetic counterparts in that the value of

(')In the absence of state mixing and for states of either even or

odd parity, we have the quantity (ilxli) - 0 , which means zero permanent
electric dipole moment. If a dc field is applied or the state has neither
even or odd parity, then we have (ilxli) J0 , and a permanent dipole exists.
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the electric dipole mnt, (in C.G.B. units where B - R) , is typically

100 times that of the magnetic dipole moment. Since the output power

generated varies as some high power of the dipole moment, (eighth for third

harmonic, sixth for second harmonic) magnetic dipole interactions are of

little interest compared to their electric counterpart. In this chapter

we shall consider third harmonic generation in an electric dipole system.

Magnetic dipole transitions will be considered later in Chapter V, pertain-

ing to three-level systems in which other factors are made to compensate

for the smallness of the dipole moment.

B. PHYSICAL PICIURE OF THE PROB0E4

At this point, before launching into a detailed quantum mechanical

study of the problem, it is perhaps appropriate to consider it from a

physical point of view. Let us assume that we have an atom in which there

is a single electron bound to the nucleus by some form of potential well.

For simplicity, assume the electron to be .a localized particle with

coordinate x (rather than a smeared out wave function) and assume that

the potential is expanded about its equilibrium position. From texts on

classical mechanics () the potential (assumed one-dimensional) may be

written

vv(xo)+ • (-o+ - (Xx-
2! 2

x0 x0 0

(3.')

1 3 V
0

where the first term is an additive constant to the zero of energy which

may be set equal to zero without loss of generality and (dV/dx)xo = 0

(')For example, see Ref. 570P. 319.
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since the point x0  is assumed to be a point of equilibrium. Taking

x0 = 0 , we have

v(X) 1d et i v v + + 1vx V ex 4 .+ , (3.2)

where the constants V1  , V2  , V3  may be derived from the coefficients

in the Taylor expansion of V(x) . We shall be interested in the qualita-
tive details of V and not in its quantitative nature since in practice

such detailed knowledge is not usually available. In the usual case, for
small excursions, the first term predominates in the expansion and one

obtains simple periodic motion with a natural frequency given by the
relation

-2 -- (3.3)
m

If the particle has a charge e , then the application of an oscillating

electric field E cos at will cause the charge to oscillate at the frequency

c in response to this drive. The equation of motion for the particle,

assuming only the first term in the expansion for V to be kept, is

2
d 2x 2 eE

2 +0o x =- cosot . (3.4)
dt m

The solution is easily seen to be

eE
V cos Wt
2 2

010 - (D•0-

where the particle oscillates at the frequency of the applied electric

field and the strength of the oscillation is proportional to the applied
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field and depends on the relation of the a.plied to ntrual freqencies

through the resonance denominator. (1)

The polarization or dipole moment induced by 'he motion of this charge
is

2e E cos &t
p = 2X m( 2 - 2 , (3.6)

giving the susceptibility, per atom

2
e

M(00 - CD)

If now the magnitude of the fundamental excitation, measured by

S, Eq. (3.5), is increased, the higher order terms in the expansion of

V(x) become increasingly important and must be included. In order to

be specific, let us assume that the potential function V(x) is symmetric,

V2 = 0 , and the next nonvanishing term in (3.2) is V3 x4/4 . By

including this in the equation of motion for the charge, Eq. (3.4), we have

d2x V x3 eE-+2 x+_-- =-cos wtdt2 (3.8)

To first order in the perturbation E the solution is simply that

given by Eq. (3.5). Upon substituting the first order solution into

(3.8), expanding the term containing x3  , and using the trigonometric

identity cos 3 wtm 1/4 (3 cos Wt + cos -3wt) , we find that in order to

satisfy the equation to the order of V3 we must include in x a term

(1)For completeness there should be a term in the differential
equation (3.3 ) ¶ehich is proportional to k and which describes the
damping, both dissipative and radiative. This term will remove the
infinite response for x in Eq. (3.5) when c 0 t . ..
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at 3u) • Harmonic balance yields

S1 V3 cos 3c 2
X3 m (9 2 2 2)3

S0)(

This component of x gives rise to a term in the polarization at the

frequency 3to given by

(e E3Cos 3wt
(92 - "M0)(, - z2)3

which when incorporated into Maxwell's equations gives rise to third

harmonic fields. We thus have a simple classical picture of the non-

linearity.

From a quantum mechanical point of view, the discrete charge lc'cated

at the point x is replaced by the charge density e. **(x) r(x) , where

*(x) is the wave function in the achr~dinger picture. In this picture
the motion of the center of gravity cf the charge density is equivaleiAt

to the motion of the particle. Wýz may imagine the motion of this charge

cloud oscillating in response to the applied fields as setting up a dipole

moment of the form

p= **e x * dx • (3.11)

The characteristics of this motion will determine the linear and nonlinear

character of p . The exact motion of the charge cloud, and hence p ,

is determined by the time evolution of the wave function which in turn is

governed by Schr6dinger's equation.

C. QUAN=W THORY OF THED HAMONIC GMRATION IN A TWO-LBMVEL Y

The quantum system to be considered will be taken to consist of two

levels with energies E1 and E2 in order of increasing energy where
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the natural frequency Q is defined by

0- (32- E, (3.12)

as illustrated:

E2

FIG. 3.1--Energy level diagram for two-level system.

The Hamiltonian of the system is assumed to consist of the unperturbed

term X0 and an interaction term N' , such that

X = X J:+ X, (3.13)

where the matrix elements of the two are given by

(io4 I1)= El

(2Po12) = E2 (3.14)

(1Ro 12) (2 oI) = o
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SandIII

n< P•'II 2)'( -2)- E

(3.15)
(1[lX Ii> (2 4 12) -- o

where E is the total electric field present. The above matrix elements

are taken in the energy representation in which X0 is diagonal and the

phases of the unperturbed wave functions are taken so as to make the dipole

matrix elements real. It is assumed that the type of interaction is induced

electric dipole; hence we have the zero diagonal components of • . In

order to make this apply to the magnetic case one would simply change E

to H and restrict the rf magnetic field to lie in a plane normal to the

dc field.

Equations of Motion

The equations of motion for the two-level system in the density matrix

notation are

(P ll e

1n+ i ý - @4 P21 - 3421 p1) (3.16a)
TI ih

(p •21 %2 - .l2p 21) (3.16b)

-_ 1 -)

122 22 =- _ (3622 TI ih 11 22

012 + 1..2.m12 m __ (P22 - P11-) )112(31)
T2 it

+2 f2l + in 1 ~ (3.16d)
1421 +2"+iP21 =-- (Pll - P22) )121 ,(.(I

T2 it

where T is the longitudinal relaxation time, T2  is the transverse

relaxation time, and p and p are the values of the diagonal elements
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of the density matrlx in the absence of applied radiation fields. (i) In

general, PL pia will be given by the Boltzmann factor when the

system is in thermal contact with a reservoir. If the system is at a

temperature T . then we have

e• "

*2 " Pl •e (3.17)

where k is Boltzmann's constant.

Let us assume that there are present two electric fields: the first,

E1 cos at , is the applied fundamental field at the frequency co and is

assumed to be strong; the second, E3 cos ('3wt - 0) , is the third harmonic

field which, for generality, may be arbitrary in origin but in the case

ultimately considered, will be generated from the nonlinear properties of

the molecular system. The total field E is then

E = 1 cos t+ E•3 cos (wt - ) . (3.18)

The parameters • may be introduced in the following manner:

B =-(3.19a)
2h

A -
(3.19b)

= JE e (3.190c)•3 21

`3 eiO (3.19d)

(1)A brief explanation of the relaxation times TI and T2 is given

in Appendix A.
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where now the strength Of the interaction, gE , is measured in the units

of angular frequency. The conjugate is left on 01 (even though the quantity

is real) in order to retain the symnetric form of the resulting equations.

The interaction lamiltonian is then

• ,(plelmt + ewt• •3i3at -ie"3a*

12 ~21 pie(i~ + P + 1ei 3 e (3.20)

Substituting (3.20) into (3.16) gives

e
=l + . -iwt t3e3t + ia-i3et

P + -i(P 01 - 2 )(ple + ~e + P e + 8*~3e ,
(3.21a)

e

P22 P22 iA t -imt i3wt -i3wt+ 2i( - (21O1e + e + 0 e + 1e*,e2 T(3.21b )

?12 + P12- _ QP1 2 = i(P 2 2 - P11 )(Plea + P1e'• + P3 ei +÷ P3e-i•)

2 (3.21c)

SP21 := _t * -• •e i3)t i3t)

P 2 1 + +lP1 i(P l P 2 2 )(Piei + 1 e + + ei
(3.21d)

We now look for a steady state solution to the al .e set of equations.

The usual procedure in solving these equations for the interaction of

radiation with matter is to assume the diagonal components to be constants
iiwt

and the off-diagonal conponents to vary as e . Such an assumption

leads to the usual linear or single quantum interactions. In order to

include the effect of higher order interactions involving more than a
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single quantum• a more general solution is required. Thus, we assume the

following:

p, 0 + *(2)eiaktX(-2)ei~Dt

= 12 + X(2 e~~ + Ili, ei

+ (4) ei•w 1-4) -ihwt
e2 e +Xi e (3.22a)

0 ()im (-2) e-i u
P22 : -22 + 22 et+ (,L e

( -(43) i• wt (-4) -iwt
2 Xe 2 e + e (3.22b)

),= (l)eia÷ X(Il) e-ia ÷ ).(3) ei321 + X(-3) e-i3wt'(3.22d)

where the diagonal components contain only even harmonics and the off-

diagonal components contain only odd harmonics. The superscripts denote

the corresponding frequency dependence and the X are complex constants.

Terms up to third order are kept in p 1 2  and p2 1  since these will be

seen to give rise to the third harmonic generation (fifth order terms would

give rise to fifth harmonics, etc., but only third harmonic generation is

here considered). Although terms to second order in the diagonal components

would be sufficient to show third harmonic generation, there is a frequency

detuning effect, to be discussed later, whose correct magnitude requires

the inclusion of the fourth order terms in p11  and p 22. It can be

shown that even order terms in the off-diagonal components and odd order

terms in the diagonal comppnents are related and vanish identically.(l)

( 1 )All the coefficients of these terms could be linearly related to
the average or dc component of the off-diagonal components X12 and l1
From the random phase argument of statistical mechanics (see Appendix A
for references) the off-diagonal components of p are identically zero
in equilibrium*; hence e = X1l 0

-12
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From the basic relations governing the density matrix for a two-

level system,

'P + '

11l .22

and (3.23)

P12 = P21

the following relationships between the constants X may be derive4:

0 0
0i + 22 0 1 (3.2 4a)

(12) + X -±) 0 0 (3.24b)

(±)+ ).(,±4) = 0 (3.24c)
11 22

n +-22 :0(3.24dc)

1.2 21

(±3) X(3 (3.24-e)

After substituting the assumed solutions (3.22) into the equations

(3.21), using (3.24b) and (3.24c) and employing harmonic balance, the

following algebraic equations are found for the diagonal components:

0 e

iT1  '~22.- X~l2' *l +2 l2i T 12(3.25a)

21 1223 "21 12 3

)1 (. -21,J. ., . - 31 ,

(3.25b)

+ (4() -
-'.8-2



and -)=-(. -

1 21
(3 .2c)

(4co- (43)-
j 4. -= 1 " ) •3 •. -(]L21(3.25d)

(1a, -)4j~ x1) -- 3)I~ ;3)
1 2

(3.25e)

and the off-diagonal components:

+-L () (2) ()(+2 . (-2)

[ ( ( +0 + - x�)+ + 2ii, 03 + 2 k -1 1 0 3 (3.25f )

+ 2

T2 21 1 +) J. 01- +, "l 3 --:h

where

AN0 0 (.6, l - "i2 (.26

The quantity A represents the average difference between the diagonal

components when the system is in equilibrium with the radiation fields.
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The quantity A! may be defined as the value when the system is in

thermal equilibrium with its surroundings:

e ex~ 14. 2'2 (3.27)

When multiplied by the tpL, ,mber of particles, N , the quantity IfA

re;presents the average ,rn, ,oz, difference n, - n2  where n1  and n2

are the nte.:e ••, iy? t ~cl• ~i lower and upper states, respectively.
By uZsi'7 \.i 13.25bj 2i 4h (3.25e), the diagonal components may

be eliminhsed from (3.25f) -ouL •K 3.25i) to yield a set of equations

involving only the -ozf-alagonai t-mius. In order to simplify the algebra

somewhat, it shall be assumed that

(D » T 1 (3.28)

which physically is equivalent to saying that the linewidth of the transition

is much less than the frequency of operation. For a gas, this implies that

the operating pressure is not too high. Upon using (3.28) in the diagonal

equations and assuming «3 << 1l, the off-diagonal equations become:

3ll):a• + L61 ~)" + !L-- 3 ,()

212 1 21 12
( 2 a (3.29a)

+ 21 1 12 - 21 12 (3.29b)

" 3 + X(3) + fl=l (1 03 ) - x(l)) (3-29c)
+ Pll+ 1 1 1

+ 3W - ),(3) A + (X(1) )(l)) .(3.29d)

-I0T2 -
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It will be shown later that the harmonic polarization is directly

proportional. to ). 1 and 4) . Since we are interested in those

conditions giving rise to a large third harmonic polarization we may

examine Eqs. (3.2p) for conditions consistent with this goal. The-

maximization of the k's will be consistent with the minimization of the

determinant of the coefficients in (3.29). From an examination of this

determinant we see that there are two frequency regions where such a

maximization may occur, namely w v a and a m n/3•
These two situations correspond to the fuqdamental frequency near

the natural transition and to the case where the third harmonic is near

the natural frequency. We shall consider these cases separately, thereby

simplifying somewhat the mathematics.

D. SOLUTIONS TO THE QUANR1M MECHANICAL EQUATIONS

1. Solution for Case I: co m 4113
Let us assume that the fundamental or pump frequency is approximnteiy

one-third of the natural transition frequency, a) f /3 , end that thý

fundamental fields, measured by l , are sufficiently stronX to cause

appreciable harmonic generation, yet not so strong that the assumption

pl < w is invalid. The upper limit on the fields imposed by the latter

restriction is approximately

E (volts/cm) < 3,500 v(kMc) , (3.32)

for a system with a dipole moment equal to one debye (10"18 esu) . Sirictly

speaking, the approximations involved in the solution will be valid to the

order (0 1 /11) 2 which will be less than 0.1 if we satisfy the corcdition

(pl/w) < 1 . This assumption is made in order to make the mathematics

tractable.

By combining (3.09a) and (3.29b) and solving for and ---21

-51-



I
in terms of 1-0) and )P) w re have

n [ Ma O- 4. X3 ())]
M to ~c~---2 - 1 3-3

122

and

first order in Ti exprsions (3.33) and (3.34) include terms up to

fifth order in •I (the next nonvanishing termw. and also retain the term

l/T2  compa~red to • , even though by assinnption, 1 »> l/T2  . It is

necessary to Tetain these smaller quantities in order to evaluate expressions

(3.25a) (which iwill be found to describe the phenomenon of saturation) as

many of the first order terms cancel. For the evaluation of other quantities
the higher order terms may be dropped. Simplafying (3.33) and (3.34) by

dropping terms of the order of l(T 2  and keeping only first order terms

in •i gives

th)e 1h ed.,.3 (3.3.5)

12

)'(1= 4".-1, (3.36)
21 1 +C
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and the derived qtantity

121 2.~ * (3.37)

The third harmonic components of 11 and X21 may be found by

substituting (3.37) into (3,29c) and (3.29d). These are

2 1
3 2 2

X3) A a) ( 812 3 PMp
n 3w-11

2w2 1 T2

33 a2" 1 • (3.39)21+)2 .-- - 3 PlCD

2w T2

We are interested in the case where (z P Q/3 • Examination of (3.38) and

(3.39) shows that X3)" will be larger than --(3) by a factor of the

order (n + 3w)/(fl - 3w) , which for these conditions will be very

large. We thus drop X(3) in comparison to X(3)
21(3)12

The condition for maximizatiaii of X1) will correspond approximately

to the vanishing of the real part of the resonant denominator of (3.29) or

3 Alla - 3W+ 0 (3.40)
2w

By solving for the ý,Irequency a we obtain

Cl 9
+ (3.41.)

3 a
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or after defining an effective natural frequency n' by

n2'( =,I (3.42)M2)

we have the condition for optimum interaction

= n'/3 (3.43)

The new frequency q' is the effective ratural frequency under the

conditions of a strong applied field at a frequency near n/3 In

terms of the quantity n' the components of the density matrix at 3a

are

2 2

X(3) = A n --t 2 =4a_ (3.4 4 a)

- T2

and

X(3) 0 o (3.44b)

From expressions (3.33), (3.34), (3.44) and the defining relations (3.24d)

and (3.24e), the off-diagonal components of the density matrix are known.

Next we must evaluate expression (3.25a) whichas will be seenrdescribes

the phenomenon of saturation. Substituting (3.33), (3.34) and (3.44) into

(3.25a) gives

X ~e 4( A* 8T -

11 11 2~

+ 2 013 T 2  - 4T2 .(?
3* + P P3.)(345

I 1+ T2 3W)2 (a 2 _ wMi 2 l J?.0"-3)
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If we consider the limiting case where the harmonic fields generated are

<<, 3 (a2 - C)-, this expripsalon becomes

0 e ( 0 is8 A0)
kpip ,r .("3.12 1r 6)

iT T 2( _-w) (n2  c22 [l(+ T2 ( -3n I0 0

2 2

Now by using the fact that + 0= and ' + e l ,we may
Iii + 2 .-p 11 22show that

0 e 1 A ze (3.47)

Vwere

,I.... el e being the thermal equilibrium values. Substituting
(f.L7) into (3).45) and solving for A yields

4 8, T82 (31 *) 3

2ý. 2 (0 ((. 21T (a 0 2 ~ 2)2 El + T;2 (n'- _3cn)2

2 T2 P3  ~ 4 T 2 (~~~ + 'V
T2 .0,(3,4+9)

+ . 2  ( OY u 2  0 2  CO 2 ) [1 +T2(W'- 3Wn)9J

Jpon using the same assumptions leading to (3.46) we have

A=AeI.2T 1 [41 2  8 T2 (p*) 3

2 2 2,( -02)2 1 + T2 ,2 20•)2

(3.50)



With the knowledge of A given by (3.49) or (3.50) and the off-

diagonal elements (3.33), (3.34) and (3.44) we have sufficient knowledge
of the quantum system to calculate its response to the fundamental fields

cad the ode, ' to which it ý ".i generate the desired third harmonic fields,

for the case ( asa/3 •

2. Solution for Case II: w Q

The second case of interest is one in which the frequency of the

fundamental radiation is near the natural transition frequency, a *4 a .

Here the third harmonic fields will occur at approximately three times the

natural frequency in contrast to the case previously considered where the

output was near the natural resonant frequency. To find the response of

the system under these conditions we shall solve Eqs. (3.29a) through

(3.29d) under the new assumption that to w along with those previously

used, 11 >> 03 and w>> l/T 2  •

First of all consider Eqs. (3.29a) and (3.29b) for the fundamental

components of 'l2 and X21 . Since we have chosen w m I it is clear

that X) will be much greater than AMl and hence we may neglect the

latter quantity. Considering the solution to (3.29a) to first order only

(neglecting the much smaller fifth order term) gives

(1 ) = A i (3.51)

C T2

By setting the real part of the denominator of (3.51) equal to ze-'o and

defining the solution to the resulting equation f" one obtains

= , (3.52)'i " OD U•

where

-Q + (3.53)
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The quantity f"' is the effective natural frequency of the system under

the influence of the radiation fields applied near the natural frequency

of the system.

Upon using expression (3.52) for ) and 2)1 0 in (329c)

and (3.29d) we obtain

•) ~ (a + - 3.

i
T2

- - c+,

x(3)= T 235

21

T 2

03 - pi

where in all nonresonant terms we have set w = il and dropped terms of
2 2the order of e compared to those of the order of Qi . Substituting

(3.52), (3.54) and (3.55) into (3.25a) gives

0 e .

1 2 T 2

(3.56)

3 A 3P3
3 14 a 2(a- - • i

(CD + F

The first term on the right hand side will predominate, the last two

being of the order of (Pi/a)4 smaller than the first. Using (3.47)
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end p~r Of~.7tbe. fIR~t teM a*"

4 Tirg(3.57)
1 + g- pf

where is defined by (3.48). Wth exp]essions (3o52), (3. 5 4), (3.55)
and (3.57) we have the density matrix for the case of pumping near the

natural frequency.

With the knowledge of the density matrix in ";he two cases of interest

we are now in a position to determine the reaction of the quantum system

on its surroundings, namely a resonant cavity.

E. MACROSCOPIC POLARMIATION AND CAVMTY REATION

We turn now to the question of the dynamics of the electromagnetic
(E-M) field and in particular to the reaction of the quantum system on
it. From classical electricity and maegtism we know that the electro-

magnetic fields may be derived from * , and A , the scalar and vector
potentials, or if the charge density is zero a gauge may be chosen where

* = 0 and both a end R may be determined from the relations

Z = curlA • (3.58)

The vector potential A is determined from the relation

1 C2

where • is the total current density arA In composed of several types

of currents as follows:(1)

( 1'See ReZ. 7, p. 117



(a~ ruinomes~z 4satioal with-tnnavort~ation, of tr~ue charges
(b) Polaalrua*I** omWm•t ourents that arise from the chenge.of

polarization with t~o..
(c) UMOSM Saon currea"e: statiiary currents that flow within

regions bhiOb .awe imaccessible to observation but ,vbih mnght

give rise to net boundary or volume currents, due to imperfect

orbit ce'caellation on .an atcmic, sesle.

(d) Convective currents: currents due to the motion of a medium

as a whole.

1. Macrc:opic Polarization

Our interest will be in polarization currents, (b), since we are

considering electric dipole effects in bound states of atoms and. molecules,

not free electrons, and bulk motions clearly will not be of interest. The

polarization current which acts as a source for the 1-M fields is given by

(3, (.6o)

where P is the polarization or the macroscopic dipole moment per unit

volume.

The macroscopic polarization, P , will be equal to the expectation
value of the polarization for a single atom times the number of systems
per unit volume, N :

P .N = N (*P . (3.61)

The expectation value of a single dipole system, () may be calculated from

the density matrix p by the relation(l)

=Tr - T (pW) , (3.62)

where p and k are the matrices of the density matrix and dipole momtent

( 1 )See Appendix A for the derivation of this relation.



operators., respectively.. The vector notation in to be interpreted as

(A.) - Tr fio 4,) (3.63)

with similar relations for $L y and pz - In the representation usod,

the matrices %re

11 P12 0 11 12

P (3.64)

P P 0
2(21 .22)

and the trace of their product is

Tr(pg) = P12 "21 P21 'L12 (3.65)

By the previous choice of the phases of the wave functions we have ýL,2
P 21 = ýL ; hence (3.65) reduces to

P = 11012 + P 21) (3.66)

where now we assume that the direction of the quantity p is that of the

fandamental field E . Returning to the definitions of P12 and P21
in terms of the X's and substituting into (3.61) gives

P = (1) + ).(')) ewt + (1-1(2-1) + e-ia>t21

(3) (3) i3wt (-3) (-3)
+ Oii -+ X21 ) e + (ki2 + X21 ) e-i3atl (3.67)
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I By using the following definitions

PW(1) + (1) (3-68)

312 "21

the polarization becomes

P = PW+ei~t +÷P(-)e- i~t• + P(+) eiw +÷P(-) e-3 , (3-69)

1 1 3 3

displaying components at both the fundamental and the third harmonic.

The magnitudes of these components are related to the quantum mechanical

properties by Eqs. (3.68).

2. Cavity Reaction

To be specific, in the problem at hand, it will be assumed that the

quantum system is placed inside a cavity which is resonant at both the

fundamental and third harmonic frequencies. The resonance at the funda-

mental is provided in order to achieve the required field strengths at

'ressonable applied power levels. Provision of a resonance at the harmonic

matches the impedance of the source to that of the outside world, increasing

the power generated by the nonlinear action of the sample.

In order to calculate the power generated by the component of the

polarization at 3w we must first determine the fields it sets up in

the cavity. This may be formally expressed by the relation

(3.70)



where X . - iXW and the quantities E and P vary as ei •

The quantity X is called the cavity susceptibility and relates the

field in the cavity to its source, in this case a time-varying polarzation.

Let us assume that the polarixation in the cavity is a vector function

of the coordinates of the cavity, P(r) , and let the orthonormal eigen-

functions of the cavity be un(r) . To simplify things somewhat let us

further assume that there is Just one resonance near the frequency w ,

denoted 00  , and the loaded Q of the cavity is given by Q0 . By

letting the field E(r) be given by

E(r) 20j (r) , (3.71)

it can be shown that

, (3.'72)

where

f () " P o2)) dV P fo V/2(373)
cavity

The quantity f 0  is a filling factor and V is the volume of the cavity."'

In this case from (3.70) and (3.72) we have

1 4m 2 f0 vl/2

- =-2 (3.74)
Yc OSOW0 "Q

Qo
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It should be pointed out that in all previous expressions involving

the fields E1 and E3  , these are the fields at a particular point in

space and are not to be confused with the normalized quent-y y

3. Output Power

The power coupled out of a cavity where the fields are generated from

within is given by the relation

cWo
Pout -- (3.75)

Qe

where w0 is the angular frequency of the output radiation, W is the

energy stored in the cavity, and Qe is the external Q (which for

optimum coupling equals the Q of the source). The energy stored in

the cavity is

W (E2 + )dv (3.76)
cavity

where the bar signifies a time average and we assume e =1 , p= 1

the samýe as for free space. At resonance we have E2 = H2  , so (3.76)
becomes

1 r B dV (3.77)

cavity

If we assume that the third harmonic field is written as the product of

a function of time (giving the amplitude) and a function of space (the

normal mode function)

E3 e( " 0) + E e-i(t " 1 u3(r) ' (3.78)
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where 0 is an arbitrary phase factor, then we have

w .13 E (3.79)

Combining (3.75) and (3.79) gives

P (3m)= D . (380)
2ou Qe

By using the results derived so far wv shall now calculate the harmonic

power out in the two cases considered.

F. OUTPJT POWER AID REACTION AT THE FUMAMENTAL

1. Case I: to.x Q13

a. Output Power

We shall now evaluate the hazmruonr.c power for the case where the applied

fields are at a frequency approximately one-third the natural transition

frequency. In this case combining (3. 68a) with (3.33) and (3.34) and (3.6&-)

with (3.44) and (3.45) gives, for the dipole moments,

2Ng Q 1 +•1 ().(3)- _ ).3
!+) • 21 P

= 2 W , (3.81)

and

3 i3
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The component of the polarization at 3, ) , is seen to consist

of two terms; the first is proportional to 13 (or to E3 ) and the second

is propcrtional to 0 (or . They have somewhat different character-

istics.

The first term, proportional to p3 , is the polarization induced in

response to the harmonic field E3 * It is the linear, first order

response of the system to fields at the frequency 3w such as would occur

were! a signal at this frequency applied to a system with a natural frequency

V As such, this component of Pt)" will have the same spatial dis-
3

tribution as the normal mode fields in the cavity.

The second component of P , proportional to , is the
31

polarization generated by the nonlinear action of the media; it is this

component of the polarization which acts as the source of the third harmonip

fields in the cavity. The spatial distribution of this component will be

equal to the cube of the spatial distribution of the fundamental fields

(Px a E , etc.). Since this spatial distribution is not the same as

that of the other component of P(+) one must allow for a different filling
3

factor. Let us denote the filling factor for the first component by fl

and that of the second by f 2  . Then combining (3.72) and (3.82) gives

-4, i Q3 N•A 2f 2 V1/2 13_

3e ( -12- + 1 3  2 2 1

(3 2 (3.83)

where w 3 is the cavity resonant frequency near 3w and Q is its

loaded Q . Upon moving the first term on the right to the left, using

the definition of 03 (3.19c) and rearranging the denominator slightly,

we have

E3 e-io + + •2-Q3 
=Ag2Q3N

U1 3 (3 - - iT 2 (Q" - 3)

8n, Q3 NA T2 f 2  3 vl/2
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r a~ing a qulklity togtor for the

/ . (3.83)

i.ar absorption coefficient,
/available. In Appendix D,

/
) , (3.86)I

I
I

/

(3.87)

/

3M__

(3.88)
'i'.8 fl

'ct _iT2 (a' 3 )]

/" -. + ... +• :+,,•.+;of saturation and is defined

(389



Fran Sq. (3.50) w .t.

1 +_2T 0_0__ "(0p*6 T21(a2 ,02 [n2 + 2)2 [ L2 (fl 3(w)2]

(3.90)

As explained in section D.1, where it was derived, this expression is

an approximation in the limit that 03 is less than the theoretical

maximum value, which will be the case in any practical situation. A

more exact expression may be derived from Eq. (3.49). In section G a

more detailed discussion of saturation will be given.

By using (3.80) and (3.88) we find that the power coupled out at

the 1-irmonic is

4 ,2 f2 p6

Ow() 2  2 [ +. T2Q 2 1 2 CD)

2 C

. •out (3m) 2 Q' 2Q l- i2A•e + 0 '3 + f

Q3 Qs[ 3- T 212" - .3m)

(3.91)

The above expressions, along with the subsidiary defining conditions

(3.19a), (3.42), (3.85), (3.87), (3.90) give the value of the harmonic

power coupled out of the cavity in terms of the operating conditions,

(W , El) , the properties of the cavity (Qe ' Q3V ' ,fl,' f2 ' W)

and of the quantum system (VI $ , T1 , T2 , 7) • It then completely

defines the generation of harmonic power due to the nonlinearities

in the quantua system in terms of the familiar linear properities of

the system. Let us simplify this expression and put it in Ls form which

iS mor ee"ally uaf.stedble from a pbysical point of view.
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I T? we examine the denominator of (3.91), using the definition of

load~ed Q , 1/4 3 - A1 +, 1/Q, , where Q0Is the unperturbed cavity
Q ,we see that it is of the form

Qe[4- + 1 +H1 2(3.92)0e ÷ sample

which in that of a cavity (9)coupled to the external world (e

with an additional lose mechanism Q The value of
describes in ef fact the "source impedance" of the sample at the frequency

3w • The exact form of these quantities in (3.91) shows that they are

reactive as well as resistive. That arises from the fact that both the

cavity and the atom are resonant and will have a reactive component if

the frequency 3m does not coincide with their resonance. Let us assume

that the cavity is tuned by varying its resonant frequency s3 such that

the reactive or imaginary components in the denominator cancel. Then the

denominator becomes

Qe + I Q5[1 + [, (f.T . 3w)23] (3.93)

'Taking for the moment S = 1 , i.e., no saturation, unity filling factor,

fl = 1 , and 3w = a' , the effective source impedance of the sample is

described by 1/Qs . This quantity is equivalent to the familiar "'iagnetic

Q ," of the standard maser terminology and may be defined in the usual

manner as

1 (pOwer lost in sample)
Qsample 2n (frequency) (energy stored in cavttyy

low

If the system's population distribution corresponds to positive temperatures

(more in lower level than in upper), then ( 0 - X0) > 0 implies A> 0
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O

implies Qa > 0 and hence a net loss or attenuation of the signal at

10 j whereas if populations ere inverted, Qa is negative and the

system acts a" a negative resistance. The possibility then exists for

oscillations to occur if 1/Q. becomes sufficiently negative to cancel

the losses, i.e.,

Q1 1 1

This, of course, is the familiar condition for start oscillations in a

maser oscillator.

Let us now combine the cavity Q and the sample Q into an effective

source Q defined by

= + (3.96)
Qsource Q Qs [1+ T - 3m)2]

Expression (3.93) then becomes

Q + , (397)Qe sur e j

which is maximized for Q = Qsource ; under these conditions we have

sure sourc

1 - Qsource . (3 .98 )

~esource e

Referring to (3.91) we see that the power out under matched conditions,

Qsource = Qe , is directly proportional to Qsource * If the sample

Q is positive, indicating a normal population and hence loss, the source

Q is reduced, lowering the power out. If the population is inverted,

Qs < 0 , then the source Q will increase and the output power will

increase proportionally. We thus see that the question of population
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inversion is important in determining the magnitude of the emitted power

through its effect on the source Q but is not required in order to

achieve harmonic genaration. From a qualitative point of view we see

that the system behave's first as a nonlinear element, generating third

harmonic fields, and second in a linear manner, either amplifying or

attenuating the signal depending on whether it is in .an inverted or normal

population state. Clearly, the latter linear process, to be important,

requires that an allowed transition be near the output frequency 3w as

demonstrated by the resonance denominator in the sample term. In the

case herein considered where 3w x a this is satisfied.

We shall not pursue the question of population inversion any further.

It will be assumed that the system is in a normal poj .iation state,

Qs > 0 , and that the external Q is matched to the source. Then using

the definition of 0i , Eq. (3.91) for the power out becomes

() fi 2source El V)

ou12&[ 1+T2(fli 3w) 2 ) (n2 _D2)2

Finally, if we assume that conditions are satisfied such that 3w = a'

there is no saturation so S = 1 ; and that the unloaded Q of the

cavity, %O , is much larger than the simple Q , Qs , the expression

for the power out simplifies to

1s f2 6

Pt(w 2• (3.100)

12&8 &3

Before discussing in detail the expressions for output power re stali

calculate the reaction of the sample to the fundamental fields and then

perform the calculations for the ease where w fl , which will give

similar results to the above.

r0



b. Rssa~ttm A Oh 1W s t

e power suplied to the cavity at the fundamental may be dissipated

Via three Main mehanisms. First, there i1 the cavity loss which Is due

to the finite conductivity btfthe-walls and is represented by -the unloaedd

quality factor of the cavity, % • • econd, there ma be a loss due to

absorption of the fundamental by the atomic system when there is an atomic

resonance nearby. For the case at hand, w * 0/3 , this loss will be

very small. Both of these loss mechanisms are first-order in nature, the

power absorbed being proportional to the energy denoity )e may

be lumped together in an effective first order Q , Q l)__ The third

source of loss is third-order in nature and is that power going via the

nonlinearity into the third order process. This component of the power

supplied by the fundamental generator goes into cavity losses, molecular

absorption, and output power, all at a frequency 3w . This form of

loss, reflected by the nonlinearity, is familiar from the theory of

parametric amplifiers.

To evaluate the effective Q of this coupling, ve may proceed in a

manner similar to that yielding the output power at 3w . By using

(3.72), (3.81) and allowing for an external source, we have

1 1 2NMO Al " 21 + (external source term)
2~ ~ _ 222

2 Xc a cn+20101  (3.101)

Upon substituting for X (3) and (3) rearranging the expression, and
12 aii

dropping higher order terms, we obtain

1 P113fl 3 1_ _ _

"" 7 + 2 2)} (external source term)

1 c Qs 2 C- 2(a2 t (3.102)

The effective Q of the third order losses, Q (3) is then seen to be

1 4_

1 -Ii.os p.~'~I(3.103)

Q Q 01 W2  2(02 w2
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where f is the filling factor at the fundamental, Qa in the emple

Q , (3.85), and S is the saturation parameter. As expected, the

maignitude of the reflected loss is dependent on the fundamental field

strength .() making the loss, -,/Q , go () 6 T uexmiazi

value of willoccurfor -I1 p f - pand Mtn

it is

S(n 2. " )2 2 (3.Q0O()

Since 1I represents the strength of the perturbation X' and 11 is of

the order of N , the unperturbed Hamiltonian, we see that I/Q(3) is

of the order (Xi/Wo))4 times I/Qs . For practical fields [see Eq. (3.32)]

this factor will be small, demonstrating the necessity of either an extremely

high cavity Q or a large value of I/Qs in order to obtain any sort of

efficiency; otherwise most of the input power will be wasted in cavity

losses. Such a consideration is seen to limit the usefulness of this as

a traveling wave device where the field strengths will be quite low for

reasonable power levels.

We shall now proceed to calculate the expected power in second case,

where the fundamental fields are approximately resonant with the transition

frequency m a i

2. Case II: wm a

a. Output Power

Having gone through a similar calculation for the other case, we shall

follow the same procedure, adding coments where there are differences.

From (3.6 8a) and (3.52) we have

(+) '(3.105)

'g•. =,+T2

P -



MA from (3-680),, (3.51i) and (3.5)), we have

P+ [." T 3 i iT 2  1 0. 36)

By substituting this in the expression for the generation of cavity fields

(3.72)., assuming that n >> l/T 2 , and tuning the eavity so-as to tune

out the reactive component of X3  , we have

L3 =(c - 2 -)] (3.107)

where f and f2 are the filling factors, Q is defined in (3.85),

Q3 is the combination of unloaded cavity and external Q's , and

for this case may be derived from (3.57) and is

1

B = '• 2 010i (3. o8)

1 + T2(n- _-)

By using expression (3.80) for the power out, we obtain

f26

Pout(c ) te (f S (3.109)
2 x• e -+ 2 T2)

In this case, because of the factor (1/40T2 ) , the contribution
to the source Q from the sample will be very small and it may7 be

neglected in comparison to the cavity Q , for reasonable Values of

the latter. Phyalcall this is due to the fact that thb output ftequency
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corresponds to thrse tUle the aturwl transition frequency. and ther. will

be negl4ible seIf-abeorption, in contrast to the previous case where the

output occurred near the natural transition and there was absorption.

opt imizing the output by setting Q % 0 we have

2 6

Pout Ow) -(.)f2 OE (3. 11)
,,•21 n i1 + T(i" - CO) I

Upon assuming fl' - w , S - 1 , we have the approximate expression

3 ( 1)-;_- fi Qo Ev V
out(3w)= . (3.111)

x • 213 03

b. Reaction at the Fundamental

As before, there will be three main contributions to the loss at the

fundamental: the cavity losses, the first order absorption, and the third

order losses which are reflected by the nonlinearity. The cavity losses

will be the same. For this case, however, the first order losses in the

quantum system will be much larger than the third order losses, due to the

proximity of the natural resonant frequency to the "pump" frequency. The

value of the Q due to the first order losses in the quantum system is

1 fS 1

S2 (3.312)

As virtually all the third harmonic power is dissipated in the cavity and

in the useful. load, the third order Q will be such that it will give a

loss equal to twice the output power;(l) its specific value will not interest

us here.

( 1 )When the output is matched, ) * , the power dissipated in the

cavity equals the output power and hen~e tli total power dissipated at 3w
equals twice the output power.
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7

OW' Interest In -the values of the 100l0014M Q's ,both at the
.fundamental end at the harmonicj, can be aseen wen meo considwer the p~
af gtting the most harmoic power out for a given inpt pe level. Me
PV*L! it di-ft'. nt-in the two ease*..

For the first case considered, w ft 0/3 , the quantum srstma presents

a large-, first order loss at the harmonic, while at the fundamental there is

only a much smaller third order losse. An Increase in the cavity Q at.,

is seen to be less valuable than a correspon4ingincrease in the Q at w

since the effective maximn Q at 3w is determined by the sample Q ,

Qs " At the fundamental, however, the field in the cavity, E1 , will be

determined primarily by the cavity Q , Q , as the third order loses

of the quantum system will in general be less. In this limit, 1,

and the output power for a given input power will vary as the cube of the
fundamental cavity Q .

On the other hand, when t m n , the quantum system "loads" the
fundamental, limiting the effective input Q to that presented by the

sample; very little is gained by increasing the cavity Q beyond this

value. Referring to Zq. (3.110) we see, however, that the output is

proportional to the cavity Q at the third harmonic, and an increase

in its value will bring a corresponding increase in the power out.

In other words, if we consider our system to be either "transparent"

or "opaque," depending on whether it is nonabsorbing or absorbing, we find

that if it is transparent at the fundamental, harmonic generation is enhanced

by providing a high Q resonator at the fundamental, while if it is opaque

at the fundamental, the best performance will occur for a high Q at the

output. If the system were transparent at both frequencies, then Improving

the Q values at both fundamental and harmonic would result in improved

operation.

It should be noted that in the case where co w fl even though the system

absorbs more power by virtue of its resonance near W this power is first

order in nature and does not help at all in contributing to the generation

of harmonics. It is to be remembered that only the third order losses

(at a)) contribute to the harmonic generation process. In fact, the first

order losses may reduce the level of output power through the phenomenon of

saturation to be discussed next.



G. SATWUTION

In the preceding seotlone smSt on is made of the phenomenon of saturation.

In -the context of this probles it describes the tendency of the population

density of the upper and lower levels to equalize under the influence of
strong rf fields. A parameter 0 has been defined which describes this

effect by relating the difference in population density under dynamic

conditions, A , to the difference in population density under conditions

of thermal equilibrium, Ae . When the population densities and
Shave their equilibrium values, S takes its maximum value of unity.

As the levels tend to equalize, A tends to zero and hence, S tends to

zero.

In referring to the equations for the output power (3.99) and (3.110),

we see that in both cases the power depends on the square of S . Thus,

as the levels tend to equalize, and 8 -+ 0 , the power output falls below

the nonsaturated value.

When a system tends to saturate, this implies that its internal energy

has increased since the average energy of the system (due to this degree of

freedom) is

0 0E Il El + )i E2

E1 + E2

2 2

where E1 and E2 are the energies of the two levels. This increase in

the energy will occur as a result of the net absorption of radiation by

the system.(') In addition to its coupling to the radiation field the

system is presumed to be in contact with a thermal bath, this mechanism

tending to restore thermal equilibrium, with the system giving up energy

to the bath at a rate given by the inverse of the quantity TV. (P) When

(')It is Implicitly assumed that we are considering a situation where
the populations of the two levels are not inverted, corresponding to a
positive temperature.

(2)The quantity T1  is defined as the inverse of the rate at which

the system thermalizes.
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the net rau of energy input exceeds the rate at which the system can

dispose of this energy (to lattice vibrations in a solid and kinetic

energy or other degrees of freedum in a gas) then the system begins to

saturate. We shall now "nvestigate this effect in both cases considered

and see how it limits the output power.

1. Saturation When w) s n/3
For this case the system may absorb power under two conditions. There

will be a first order effect corresponding to the absorption of power at

the fundamental in the tail of the absorption curve. For narrow lines one

would expect this to be small since the applied frequency is approximately

one-third of the natural or resonant frequency. The power absorbed in this2
case would be proportional to the incident fundamental power or 2

The second term in the saturation is due to the absorption of the harmonic

power by the system by virtue of the proximity of its resonance a' to2
the output frequency 3M . This power will be proportional to E3 or

6to E1 . We thus expect the saturation parameter to contain two terms,2 2o to1n rprinlt E~ (or and the other proportional to E6one proportional to (or

6 1
(or 0I) . Referring to Eq. (3.90), we see this is so.

Let us now calculate the field strengths, 01 , at which the saturation

takes the value S = 1/2 Assuming 3w " , the first order term would

cause saturation when

T2 &I

or

- 2 (3.113)

while the third order term would cause saturation for

6

16 T1T2
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For the assumnption T1 o T2 , valid for a gas at microwave frequencies,

and the assumption 0 >> 1/T 2  , the third-order term is seen to be the

primary source of saturation.

At the onset of saturation the source Q , (3.96), tends to %
2end the expression (3.99) for power out varies as S8 . For the predominant

third order saturation, Eq. (3.99) tends asymptotically towards

6
PC(3 ) const. -2

(1 + const. E1 )

which shows that the power out actually decreases in the limit of large
E1 •

2. Saturation When c w

In the second case, a x , the strong fundamental fields, near

resonance and causing first order absorption, will dominate the saturation.

From Eq. (3.108) the condition for saturation is

2 1(3115)

In this case, under the conditions of saturation Eq. (3.110) becomes

Po u t(3w) = const. 1
(1 + const&El) 2

which shows that even under these conditions the power out is proportional

to the power in, and does not decrease as in the first case. 7n this ½!1t

the expression for the power out becomes

2 2V
P(3m) 2(33Qo1E1
out = 213 Q 2 3 2 2 (3.116)

s T1 T 2
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3. Coments on Saturation

By comparing the saturation levels for the two cases of interest,

S(3114) and (3.115), we have

(i 6 _), 2 2
= Ti T2  (3.117)

As aTI and aT2 are usually much greater than unity, we see that the

occurrence of saturation comes earlier in the case of pumping near resonance.

In the above it has been implicitly assumed Lhat cu = I" or cD = i' .

A further look at the exact expressions for saturation, (3.90) and (3.108),

shows that by operation off resonance, n' , a" / w , Lhe effecte of

saturation can be reduced. However, (3.99) and (3.110) show that corre-

sponding to this reduction in saturation there is a reduction in the output

power. In the operation of a device based on these principles the choice

of w relative to V" or n' must be based on the various parameters

of the problem, such as power available, the harmonic power desired and

the properties of the circuit.

One comment which can be made, however, is that in all the expressions

for saturation, (3.113), (3.114) and (3.115), a speeding-up of the relaxa-

tion process, i.e., a reduction in T, , will result in an increase in

the value of AI at which saturation occurs; this will result in higher

available output powers. Hence, in any material which is to be used for

hannonic generation in this manner, we desire a short TI or spin-lattice

relaxation time.

H. DISCUSSION

In the preceding sections of this chapter the mathematical theory of

harmonic generation in a two-level system has been discussed. Two particu-

lar cases have been studied: the first, in which the frequency of the

third harmonic output is near the natural resonant frequency; the second,

where the applied fundamental frequency is near the natural transition.

In both cases the quantum system behaves as a nonlinear element generating

a component of the macroscopic polarization at a frequency three times that

of the input. This time-varying polarization acts as a source for the
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electromagnetic fields which may be calculated from Maxwell's equations.

The magnitude of the polarization and the fields generated may be expressed

entirely in terms of the krown parameters of the quantum system and its

surroundings; no phenomenological nonlinearity must be assumed. Thus it

is seen that the nonlinearity is intrinsic to the quantum system and may

be evaluated in terms of known quantities. Some of the aspects of the

results obtained will now be discussed.

1. Resonant vs Nonresonant Behavior

Although only two particular cases have been considered, namely when

the applied frequency is such that c a n/3 or w - n , it is more gener-

ally true that the existence of the nonlinearity is independent of the

frequency a) . This may be seen from the fact that in the over-all inter-

action the total energy in the radiation field is constant (three fundamental

photons being destroyed and one at three times the frequency being created)

and hence the energy of the quantum system is conserved. The fact that

the system contains discrete natural frequencies (in this case only one)

manifests itself in the theory by means of the resonant denominators, which

in the two cases considered are 1 + T 2(n - 2and + T2 (1 - .

A general theory would contain two such denominators, one for the fundamental

and one for the harmonic, and would appear as the product of the two above.

The two cases considered are thus only special cases of the more general

result in which we have chosen the frequency to minimize one or the other

of the resonant terms.

The important thing to note here is that the nonlinearity is intrinsic

to the system and independent of the frequencies applied. The relation

between the operating frequency and the natural transition frequency merely

alters the magnitude of the effect through the resonance denominators. When

the operating frequencies are all far from quantum transitiona then the

system looks similar to a nonlinear reactive element. When.koperating near

a resonence, the system looks like a combination of nonlinear resistance

(')If the quantum system's energy were increased or decreased, the

change would have to correspond to the difference between its energy eigen-
values. Such a change would place restrictions on the radiation frequencies
causing the transition, namely E ± co (Ef -Ii)/il , 'where + indicates
absorption, - indicates emission, aZd f and Ei are the final and
initial energies of the system.
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and reactanee but of a larger magnitude due to the reduction of the

resonance term. In the miqeraave regiaon. the nin n strenth of the

nonlinearity will usually be small enough that resonant operation will be

required. In general, the question of resonant vs nonresonant operation

will depend on the particular aspects of the overall problem.

Another aspect of this problem is the question of saturation. Under

resonant operation the system will absorb energy, thus causing saturation;

for nonresonant operation the saturation is reduced along with the magnitude

of the nonlinearity. The importance of saturation is again a function of

the particular problem, being most severe for high power applications.

2. Dependence on the Parameters of the System

The dependence of the output power, Eqs. (3.99) and (3.109), on the

various parameters of the system are sunmarized below:

(a) Dipole moment. The output power varies as p , a factor of

Scoming from l/Q. . From this it is clear that magnetic dipole

transitions will give negligible effects compared to electric dipole

transitions. (I)

(b) Linevidth and concentration. The concentration along with the

linewidth enter through the factor Q or, alternatively, through the

absorption coefficient y . They occur as the product NT2  , which for

a given transition is approximately constant. Thus increasing the con-

centration N , will leave Q constant while increasing the linewidth,
B

and conversely.

The quantity T2 also occurs in the resonance denominators as well

as in the expressions for saturation (along with the longitudinal relaxa-

tion time Tl). Here a broader line (smaller T2 ) will result in a broader

frequency response as well as in a reduction in saturation.

(c) Population difference and the Roltzmann factor. In both cases

the output power is proportional to the square of the population difference

through its depwrdence on Q . This squared dependence points out the

important fact that the sign of A or, alternatively, normal vs inverted

population, does not play a fundamental role in the nonlinear process. It

i()In the first case considered, when and the

cavity Q is large, the output varies as This ps a special case.
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does, however, have a subsidiary effect through the first order loading

of the cavity which is proportional to the first power of A . A noa3l

population distribution, A > 0 , causes the system to present a positive

loss to the cavity and lowers the Q ; an inverted population presents

a negative loss and raises the Q

There exists possibilities of using inverted populations to.enhance

the overall nonlinear effect but they will not be given here.

The magnitude of A may be found from Boltzmann statistics, which

for no saturation is

W I v(kmc)
'= e=-M - . . (3-118)

2kT 40 T(°K)

For room temperature and wavelengths around 1 cm, this is a factor of

the order of 1/400 compared to a maximum value of unity. Operation at

higher frequencies or lower temperatures will result in an increase in

A , and hence an increase in the output power.

(d) Filling factor. The output varies as the square of the filling

factor f 2  (3.73), which is to be compared to a linear dependence in first

order processes. This places a strong importance on good circuit design

by which f 2 may be increased. The other filling factor f helps de-

termine the source Q (for the first case), and should be minimized con-

sistent with a maximization of f 2  ' For a gas completely filling a

structure, fl = 1

3. Dynamic Shift of the Natural Resonant Frequency

Orie aspect of this problem which does not appear in usual formulations

of the problem is the effective detuning of the natural frequency of the

quantum system. In the two cases considered-the new frequencies were

denoted 11' and n" , and are given by (3.42) and (3.53). This detuning

is of second order in the perturbation, N" , and under the usual assump-

tion of small perturbations is negligible. In the field of magnetic reso-

nance this shift is known as the Bloch-Siegert shift. Irn terms of the dc
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field H0  and the rf field H1  , it is given by(i)

+-Val) + \U (3.119)

where n' is the effective frequency and & is the frequency corresponding

to the unperturbed eigenstates. By using values of dc and rf fields typical

to spectroscopy or maser applications this shift is of the order of one part

in 107 or less. In our application with electric dipole transitions and

strong fields the detuning may be an appreciable fraction of the natural

frequency.

At first such a concept may seem strange, as the usual interpretation

of the radiation problem is that of quantum jumps between the discrete

energy levels of the system. Such a picture, howzver, rests on the assump-

tion that the perturbation is small and is effective only in causing transi-

tions between these unperturbed leve±E. When the perturbation is strong

the only rigorous method of solution is to go back and solve the problem

of a quantum system strongly coupled to the electromagnetic field. Under

such a procedure it should not seem surprising that conditions of optimum

interaction would differ from small signal theory. For the electric dipole

case such a shift might be looked upon as a sort of dynamic Stark effect.

From the point of view of the problem at hand the variation of the

effective natural frequency with power level implies that given a fixed

frequency of operation, there is only one power level at which optimum

interaction will occur. Whether or not this variation of the natural

frequency is significant depends on the linewidth of the transition. The

effect will be less for broader lines.

(')This is precisely the same relation as Eq. (3.53). It may be

derived as in the text or by Bloch's original arguments. Another simple
method is to take the linearly polarized field and separate it into two
circularly polarized components. By diagonalizing the Hamiltonian contain-
ing the dc field and the counter-rotating term and averaging the latter,
Eq. (3.119) is derived as the difference between the new eigenvalues.
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4. An Example: Harmonic Generation in Gaseous NK3

We shall now consider an example using the inversion transition in

NE3 •

a. The Pressure Dependence of the Spectrum

The inversion spectrum of amnonia is made up of many lines, each

corresponding to a different rotational mode of the molecule. At low

pressures these lines are resolved, each having its own value of absorption

coefficient. As the pressure is increased each of these lines broadens

with half-width of 30 Mc/mm Hg, while preserving the magnitude of its

absorption coefficient. When these lines begin to overlap, the overall

absorption coefficient at a given frequency will be the sum of the indi-

vidual contributions. At high pressures the many lines will be unresolved

and will appear as a single broad line with an absorption coefficient

which is nearly the sum of the individual absorption coefficients. Thus

Qs , and hence the level of power out, should increase with pressure up

to a point where the linewidth of an individual component becomes of the

order of the spacing between the lines. For ammonia, this occurs at a

pressure of about 200 mm. Hg, corresponding to a half width of 6 kMc.

b. Saturation

For most gases with transitions in the microwave range we have

T= T2  .(l) Since NT2 is a constant and N c pressure, increasing

the pressure will reduce TI and T2 and hence will reduce saturation.

The effects of saturation should then be most predominant at low pressures.

By taking an operating pressure of 300 mm Hg where the line has nearly

its maximum absorption coefficient, 6o 7 = 7 x 10-3 cm"I and by using

the following data for NH3 :

i = 1. 4 7 x 10"18 esu

= 21( x 2X kMc

S= l/2T = 30 Mc/mAg

(1)See Townes and Schawlow, Ref. (59), pp. 352, for a discussion of

this.
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we find

1-b x 1. 0-3
Q5

and

(a T2) 2.67

The relations for output power (3.100) and (3.111) are

2

Pout(Watts) 4.7 x 1010 f E61

where the third harmonic frequency, 3w , is' near 24 kMc, and

P (watts)= 3.1 x i0"10 f2 E6(esu)out f2 1(eu

where 3w m 72 kMc and Q = 5,000 . Plots of the theoretical output

power per c.c. of cavity volume for the two cases are plotted in Fig.
3.2, where the effects of saturation have been included. In Fig. 3.3

the saturation parameters S , (3.90) and (3.108) are plotted for the

two cases of interest. For both plots the quantities are plotted against

E2 which is proportional to the power supplied at the fundamental.
A similar calculation using HCN , (y= 9 x 10-3 cm1 ,= 3 x 10"18

=v2 x 88.6 kMc) gives

2

Pout (watts) 0.55 00 2 6(esu)ou f 2
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I. CONCLUSIONS

In this chapter a detailed calculation of the process of third harmonic

generation in a two-level system has been performed. The value of the nora-

linearity has been related to the constants of the quantum system and its

surroundings, which here is a cavity. The effects of qaturation and the

losses in the form of Q's have been derived from the same formalism.

The dependence of the nonlinearity on the parameters of the system has been

discussed and an example has been given using the well known inversion

transition in ammonia.

The particular system studiedp (the two-level system) is the simplest

of all quantum mechanical systems and is clearly only an approximation to

any real situation. It does demonstrate, however, that even such a simple

system can show nonlinear properties. Other quantum systems containing

three or more levels will display similar nonlinear properties whose magnitude

and frequency range will depend on the particular system involved. For

example, in Chapter V, a three-level system is considered as a second

harmonic generator. Other possibilities exist for a two-level system;61
second harmonic generation may be performed by the use of a dc bias,

and a form of parametric amplification is possible.(') We shall next

consider the parametric process.

(')See Chapter IV
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CHAPTER IV

PARANTIC E S IN A T-L

ELECTIC DIPOLE BY&T=

A. INTBROIXCTION

In the preceding 1hapter it was shown that a two-level electric dipole

system behaved in a nonlinear manner and its use as a third harmonic gener-

ator was calculated. Here another application of nonlinear phenomena,

namely parametric amplification or oscillation, is considered using the

same two-level system. This process has one very important difference

from harmonic generation processes. For the latter there exists an out-

put (however small) for any level of input. To obtain parametric oscilla-

tion (sometimes called subfrequency oscillation) the level of the applied

"pump" signal must exceed some critical value determined by the nonline-

arity and the circuit parameters. This value is known as the threshold.

We shall calculate the threshold for such a process, relating it to the

circuit Q and to the parameters of the two-level system.

The quantum mechanical system to be considered consists of two levels

with energies El and E2  , where the natural frequency is defined as

S- (E2 -. ,l1I0 . The interaction of the system with the radiation fields

will be taken to be via an induced electric dipole. In the energy repre-

sentation the perturbing Hamiltonian will then contain no diagonal compo-

nents, as a result of which higher order processes connecting the two

states must contain an odd nunber of photons.

There are two interesting types of parametric processes possible

using such a system. In the first, four frequencies, 01 ' 9, 2 ,3

are present. Energy conservation requires c + a + m + - 0 ,

where w > 0 for absorption and w < 0 for emission. By setting

S% " " O ' W3 , D- - and providing cavity resonances

at so and w a , a parametric amplifier is possible where
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In such a system there will be electromagnetic fields at , P CO and

to " This is shown schematically in Fig. 4.1.

In the second process the atomic resonance acts as the idler,

a , and no electromagnetic field need be present at ID . Again

by setting -a, - , the frequency condition is

This is essentially a Raman type process in which the excitation is by two

photons, and is shown in Fig. 4.2. Here a cavity resonance need only be

provided at o in order to obtain the parametric process. It is this5

latter process which will now be described.

T- T

a ) CD
p -t

10,1

FIG. 4 .l--Energy level diagram for FIG. 4 .2--Energ level diagram for
the first type of para- the second type of para-
metric process; metric process;

2w - a +C w W.0
p a i p

B. THE EQUATIONS OF NOTION

The equations of motion for an induced electric dipole may be derived

in the following manner:(I)

(1)These equatiops are derived in a report by 3. T. Jaynes.62 Their
equivalence to the density matrix formulation is demonstrated in Appendix C.
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1. Assume only two energy levels are involved, so that the state of

the system can .,e represented as

* - a.(t)llu, + ,,2 (t)1 , (I.43)

where l and lu) are the eigenfunctions of the unperturbed system.

2. The Hamiltonian is

where is the unperturbed Hamiltonian, •op is the dipole operator,
0 op

and E is the radiation electric field.

3. In matrix notation, these are defined as

• . •• = , (4.4)

1 02 0 ( 12" 212 E)

where u12 is the matrix element of vo, between the two states, and

E, and E2 are the eigenvalues of the unperturbed Hamiltonian.

4. The dipole moment is given by the effective value of the dipole

operator, P = (Io "

5. Time derivatives are calculated from the cczmtator with the

Hami ltonian,

SP)

6. From Eqs. (4.4) and (4.5) the following equations of motion are

obtained:

2 - (4.6)
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and

*.u~, (4e.7)

where

2

and W in proportional to the energ stored in the dipole system, referred

to the equal population condition as the zero point of energy.

Equation (4.6) describes the dipole moment, P , an an harmonic

oscillator driven by the electric field through a coupling constant pro-

portional to W , If the populations are equal, the coupling to the

electric field is zero, which means that the dipole does not "see" the

radiation field. The maximum coupling to the field occurs when the

population difference is a maximum.

Equation (4.7) equates power absorbed to the rate of change of stored

energy; P is equivalent to a current density so the E P is the power

delivered to the dipolar system by the radiation field; ff , in turn, is

the rate of change of energy stored in the dipolar system. To account

for loss mechanisms that might exist, Eqs. (4.6) and (4.7) are modified

to

P + - + -- WE (4.8)
T2

(+) (4.9)

, T,
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ithere io the relexatien time associated with the decay of the dlpoi.
moment, and Ti the relaontion tim for the decay of stored enera.

The % to the estay-state value for the unperturbed energy, which, for

a systen in themali e*qtUbriua,, is .iven 1W the Boltsman distribution.
lquations (4-8) and (4.9) involve the three variables W , P and

I , and so an additional equation is necesuary for a unique solutioý.
From Slater's norm mde expansion for the fields in a resonant cavity,

Eq. (4.10) can be obtained:

2- 2 O CO (4.1o)
- W

where w = resonant frequency for the unperturbed cavity,

a
QL loaded quality factor for the cavity,

f = the filling factor,

V = cavity volume, and
N = number of interacting dipoles per unit volume.

It is assumed, in Eq. (4.10), that one normal mode field predominates,

and cgs units are used.

C. PARAMUIC APLJFICAION OR O8CILIATION

A steady-state solution to Zqs. (4.8), (4.9) and (4.10) can be obtained
by letting
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where P-," P* and I - , os required to give real values for I

and P ., hch value of a corresponds to one frequency present.

By combining IV.. (4.8) and (4.9) with the expasions above and using

harmonic balance, we get

32w1 /l 2
-4 2c + P ( , 1

21 2 -- l~ Pt-n-r '(.1

" "I\'D /n r J(cot - (0n) + -

n Tl

where •-n-r - moment at frequency o " (wn + nr) , and

JTI

WO W- WZA P-y EY . (4.12)
y

The term W0 is proportional to the average value of the population

difference, and is different from We because of the saturation caused

by the presence of the fields.

Considering now the case of a cavity containing active dipoles and

resonant at two frequencies a) and co , let us define another frequency,
a p

w i , by the relationship

2c c + c•, (4.13)
p

The quantities w , and pi , are, respectively, the pump, signal
p

and idler frequencies of the parametric system. Since the cavity does

not resonate at 01i , then Ei is zero, but P has a component at

that frequency.

The amplitude of the pump field, Ep , required for parametric

oscillation is reduced as the pump frequency approaches 9 . For this
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reason,• let

S - ( +)
0 A(l +)'mi " ,(l +)

S - U(l+2e-x) 2e( .-)

where e , X << 1 . fbe term X in introduced to represent the shift

of the natural frequency a due to the presence of the strong pump

fields. From Eqs. (li,11) and (14.12), we get

S2 2 -2g2
(4 + 2X + - + - P - P-i

2 2 x

22 2

WO )2 2e(e- X)

8 2jn

__ p + _ (2x + - P-i
-x s€ T2/

2 x) 2

We

0o 5 2 , (14.17)

IE

where

822
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In the derivation of Eqs. (4.16), (4.17) and (4.18) the following

assumptions have been ade:

(b) T, a T 2

(c) The pump amplitudes are much more intense than the signal and

idler amplitudes so that only first order terms in signal and idler have

been included.

Equation (4.18) expresses the saturation effect. For low values of

pump field, we have W0 = We , and as the amplitude of the pump field

increases, W0  approaches zero, which means that the popxplations tend to

equalize. A normal population distribution corresponds to a negative

value for W , and similarly a populativu inversion means that W ise e

positi-ve. For a normal population, the range of W0 is 0 > W0 > We .'

There is a relationship between 8 , e and X so as to optimize
the parametric effect. This relationship can be obtained by considering

the determinant, A , formed from the coefficients of the dipole moments

P and P-i :

A - 4, [ 22_ X(X-2e)] + j- %2+ [ X 2  'I -
2LJ

The magnitude of A becomes a minimum near the condition for which

B = X(X- 2e) , (4.19)

which means that Eq. (4.19) expresses the condition for optimizing the

dipole moments. Using the value for 82 given by Eq. (4.19), P is

given by

- h) 2  s + -2 E (4.20)
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squating the imagiima terms that result from substituting the above

expression for M. into .Dq. (4.lO), the circuit equation, we obtain the

oscillation condition in terms of the loaded Q of the resonator:

(G - x)X
2

. 1
_ -_(4.21)

(, x)¢-. 2]2,

where

- "- •¢'
(Ž ) (4.22)

H 'n 2W UNJT

Ni - population of the lower state

W - energy stored in the cavity gli J dV

The derivation of Eq. (4.21) assumes that P5  and la are uniform

over the interaction region. A negative sign is used in.Eq. (4.22) to

make H positive, as % < O for the normal population distribution.

The real-terms that appear from the substitution of Eq. (4.20) into

Eq. (4.10) are cancelled by choosing the appropriate value for c% , the

resonant frequency of the cavity.

By letting x X/e , Eq. (4.21) becomes

S2
Io -- X) + 'I [.-

From Zq. (4.19) it is seen that 52/62 x(x - 2) , so that the

permissible range for x is x > 2 or x < 0 . Since the right hand

side of Eq. (4.23) must be positive, the region of interest for x is

x < 0 , which meas that w and qc are both either larger or smaller

than a.
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ftation (k 2.3) = be w ritten L. of the on-resmneo unsatur-

ated absorption coefficient given in Appendix D:

20N T2W / 2 42
S -Z 2e (4,.24)

c

where c is the velocity of light. Assuming a filling factor of unity

for the resonant cavity, we then find that

1 7
-- - , (4.25)

where X is the wavelength. Combining Eqs. (4.23) and (4.25) results in

Sx2
x x

f(x) .(4.26)

The function f(x) has a maximum value approximately equal to 0.15

which means that we must have 4st/y).. < 0.15 for oscillations to occur.

For a rotational mode of oscillation in a gas at room temperature at

X - 1 mm , a strong absorption line might have y - 10" cm'l , which

means that % > (4x/1.5) x lo0 If is specified, then x is

given by Eq. (4.26). As an example, with .- 1.2 x 10 , we find that
x_• -1 . In terms of e , this means

M - f(l +)
p

CO, - ~ e(-e)

- n(l + 3e)

hn h
B - /X( - 2)' eIei -- 4 I11

912 912
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F 1 1we have E. kv/cm With e - 0.01 , then we

find E lO 10 Iv/cm and f - f p 6 kMe/s is the difference between

the signal and pump frequencies.

I). CONCLUSIONS

The preceding discussion has indicated a manner in which a two-level

system can function as a parametric amplifier. It differs from usual

parametric amplifiers in that the quantum system provides the idlertl) and

t1- ptump frequency equals half of the sum of the signal and idler frequent
( (2)

By providing a dc bias, operation can occur where co - M +

Other schemes using more than two levels offer the possibility of parametric

processes which my prove more efficient than the one here presented.

(1)In this respect it is similar to Suhl'a ferrimagnete amprItt'l"r,
whi ch can une R% mode of the sample for the idler.

2 2)Subharmonic pumping of a parametric amplifier has been •,,Idrvd
by Mortenson. 63
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CILAPTE V

THE THEROY OF SCOUD HARMONIC GDIMWION IN A THMI-L!VEL Br&=D

In this chapter we shall be concerned with the interaction of

radiation with a quantum mechanical system consisting of three levels.

The system may have only three levels in the frequency region of interest,

as in the case of an S w 1 spin system, or if there are more than three

levels we may consider those most strongly coupled to the fields. Such a

three-level system can act as a three-frequency mixer, a special case

being second harmonic generation.

Using the density matrix approach, the source of the nonlinear effect
is pointed out and the problem of harmonic generation is considered in

detail. The dependence of the nonlinearity on the parameters of the

system is considered.

A. EQUATIONS OF MCTION

Let the system under consideration consist of three energy levels

E ,E2 , and E3 in order of increasing energy and define the
natural frequencies as in Fig. 5.1.

E3

n32

2t

Ell

FIG. 5.1--Energy level dtagram for a three-level system.
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The Ham iltonian .m be taken as

where 4 is the perturbation resulting from the application of external
fields and is the matrix element of the perturbation taken between

levels i and j . The energy representation is used and it in assumed

that there exist nonzero matrix elements connecting all of the levels.

We may write the equations of motion of the system using the density

matrix formulation in the standard manner. (1) We shall assume that the

longitudinal relaxation times are equal while the transverse times may

be arbitrary. The assumption of equal longitudinal times simplifies the

equations for the diagonal components and the resulting expressions for

the saturation effects. Such an assumption is physically Justified, as

it is usually the case that such times are equal.64 Further, we are not

here interested in effects which depend in any way on such discrepancies

in relaxation times; their effect would be merely to alter the details

of the operation and would in no way affect the principles involved.

The equations for the three-level system are:

(Pl Pe[' 2 'l ~J l 2 (5.2a)Pli + "- 2 P21 + 13 P31 P12 )L P13 (1.31

T 2 a-it pit Ip Lp l(.bT1i

P2 + 22 22 X" (5.2b)

Tz

2 TV1

)See Appendix A.
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and

T2+L~ 3  i1P 2 mB~ 3 Q R 2  2 43  (5.2e)
•2+ P i a " (52f

-1 3 + P1 3 " ± -3 p[3 - + .

Let us examine these equations. The first three describe the behavior

of the diagonal components which are essentially the probability of

occupancy of the three levels. In the absence of an external perturbation,

S- 0 , these quantities take on their equilibrium values. If X A 0 ,

then they are modified, giving rise to saturation effects. The off-

diagonal equations describe the coupling of the states, and it is these

which describe the absorption and emission of radiation. Let us specif-

ically consider the equation for the coupling of the 2-3 transition. The

first term on the right hand side of the expression for P23 gives the

direct coupling due to the perturbation X, which, to be effective, must
23 wih ob fetvms

be almost resonant with the frequency Q 3 In addition to the direct

cc.pling there are two additional terms which give rise to indirect

coupling. The first, p X , shows that if there is coupling of the
1-3 transition, p 0 , then the perturbation X1 will mix with

transition 21
this to give a resultant coupling of the 2-3 transition. The last term

is of the same nature. Since p1 3 will be seen to be proportional to

% , this coupling term is proportional to X and is seen to be

of second order. Such a process involves two photons and is nonlinear

in character. The other two equations are of the same nature, displaying

both linear and second order coupling.

We may now qualitatively understand the behavenr of this system as

a frequency mixer. Let us suppose that we apply two radiation fields at

frequencies w and a2 . Let us further postulate that they are ap-
1

proximately resonant with the 1-3 and 1-2 transitions, respectively. (1)

1I'n general, any two frequencies can be mixed, but unless they are

approximately resonant with the natural frequencies the effect will be
small.
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These perturbatios will then, in a linear fashion, drive the system WA&
give nonzero values to the ocsqoseits p 13 and p2 1  . These will then

mix vith the perturbations$ and W13 and give a driving term for

P23 at a frequency o3 - o - co . As shown in Chapter II, vwe wy cal-

culate the component of the dipole ýuomnt at the frequency w3 . and
since it is proportional to P23 we see that the fields at frequencies

San d a 2 w i l l m i x t o g e n e r a t e a c o m p o n e n t o f t h e d i p o l e m o m en t a t t h e

difference frequency. (1) If we now provide a cavity resonance at this

frequency, we can extract power and the system acts as a mixer. (2)

A similar type of parametric process has been considered by33
Anderson. There he applies a pump field resonant with f3l and allows
for cavity resonances at 01 ' •22 and w2 l 032 where 1 + w2 = 031"

Above a given threshold pump power level determined by the Q's of the
cavities one can achieve a form of parametric amplification or oscillation
at the frequencies ai and w, . It is similar in operation to Suhl's

ferromagnetic anplifier.

We shall now consider the specific case of second harmonic generation

using the same three-level system.

B. RESONANT HARlCtIIC GEEATION

We shall start by assuming that we have a three-level system in

which the intermediate level vith energy E, lies approximately midway
C.

between the outer levels which have energies E1  and E . We shall assume

that there exist matrix elements connecting all the levels and that the longi-

tudinal relaxation times are equal. We shall assume magnetic dipole inter-

actions and let there be a strong field applied at the fundamental frequency

H(0)) - H1 c (t -(c ,

(1It should be noted that there will also be generated a component
of dipole moment at the sum frequency but because of the resonant nature
of the quantum system this will be very small, as it does not correspond
to any of the natural transition frequencies of the system.

) •2The magnitude of the power out will be proportional to the
product of the power at frequencies a,1 and c2 and ,ill be nonzero for
any finite value of this product.
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II

i rces gvnby H•m 2 o (m)and a veaker second ha,-anie field whic.h is generated by the non.l.nea~r

We need only consider perturbations which are almost resonant with the
various transitions, as the effect of nonresonant perturbations is very

small.l1) We may then write our perturbing Hamiltonian as

' -2 12 H1 cos (Wt - - HI - + -e

2 11 0 a e ( ti2 3  H e* (5

'213 = 423 H1 cos ()t 2 = 2it

•13 H 2oim 1M

an13 the 3 H2on osgte 2uantitie

Let us now define the quantities eon which measure the strengtoh e)f the

perturbations in dimensions of frequency

012 12 H 1 e-i

- 1 -
23 2

p H1l3 2 .(5.4)

13 2

and the conjugate quantities

P21 -ý

32 ý23

11h magnitude of nonresonant perturbations 'is found to be of tp*.
order of X4W ,. while resonant perturbations are of the order of N /I4
where hfl is the linevidth. Since in any reasonable situation wD >> A4
we may neglect the nonresonant terms.
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From a careful examinstdion of fts. (5.2)p ye see that the ."natural"

frequwncies: of the various components of the density matrix wre

P-1. P P2 2  P3  , all "do"

P23 ~32 P 32 32

0 130 31 P 31 3

Since only those perturbations which are almost resonant will have any

effect, we assume a solution of the form

|t~

'where)`11 P P 1 .2  Bu'12in

2 '-22 P , 23 )23 ,w 3 ,." ( .

33 33 1 3 1 3

where the X` are constants, which are in general complex. By using

harmonic balance, our equations become

( X, - 1 1•) T 1 (012 X2 + 01:3 k• " P21. X12 " 031 X13) ('

k* i -0(6b)

(22 - )`) (21"12 + 23 '32 " 12 '21 32 • )`23(

( •e iT,( + X X. (6c)
| (x~33 -,33) iz(31 13 P32 x23 " 1z3 x31 " 23 '32)

021 OD) + )-32 -[ ].• -12 1 211 313] (d



We may now proceed to solve these equations using the following asexasgios.

First, assume that the frequency w Is such that 2w = , and take

the fundamentla fields to be each larger than the harmonic fields. Then

we have for the two cowpanentu a .12 and ).23 their values as determined

by first order interactions:

1l2 (n•l - o)+ "T

22 " 33) P23 (5.8)

23

By substituting these in Eq. (5.6f) and using the fact that 2m = 31
we have the relation for X13 :

I T 1 (x ) + TI13 '12 D231•3 - 1 •33 133 133 "Un +t + I (•-I'
T -i 112')£ 23)

11

x 8(X33 - Xl) + - ( 2)2 2  33211 - , (5.9)

where b a 2l -" (a 32 - "i) . We nov substitute these in the

equations for the diagonal components, giving

3." 1
133 1 x; 3wIT .023 0-2 3 C.Ci (5.10)

.i '23
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where we ehue lnoluisd only the largest terms, and where c.c. is the

cow•lex 04upgate quantity. By performing soge algebra, we find the

follow 1*g

A+ e 1 ) (5.11)

(1 + A)(1 + B) - (1 + A) 3 - (l + B))

'22 - 33+)'30)
(l +2A )(1-,+2B) -AB

(1 + 2A)(B + e)- B(A + (5.1

(1 + 2A)(1 + 2B) - AB

e (1 + 3B)- x3e (1+ 3A) + (A- B)(X 11 X x33 33 (1 + 3)A •

where

2 T1  021

A.�� [2 . (5.15)47j]
2 T 1 023 032

"B 12 (+.16)

C. MACEROSCOPIC MAGNUTIZATION AND CAVITY REACTION

1. Magnetization

Given the density matrix, ie can proceed to calculate the values of

all the observables of the system. In particular, we are interested in

the components of the magnetic dipole moment. The prescription for finding
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the value of an obs*rysblep ,'Iin

(q> mrp) . (5.17))

We find for the dipole Imat per unit valum or for the manietization at

the harmonic

M2 a N. (p31 '1.3 + P13 3 1 (J.18)

and at the fundamental,

'. " ' (p 2 1 41+ P1 421  + P23 3 + P3 2  2 3 ) (5-.19)

where N is the number of systems per unit volume. The second harmonic

component of M will determine the amount of output power generated,

while the component at the frequency w determines the amount of

resistive loading at the fundamental.

2. Cavity Reaction

We may determine the fields generated in the cavity by the magnetiza-

tion from the relation

1H. M J, (5.20)
c

where the cavity susceptibility, X. , is given by

2

"c n

Here, H and M vary as e'Wt and we have the definition

M f Vi 11Q() • V,(Z) U (5.22)

cavity

-. 108 -



where j ) in the normal mode function for the cavity. It is assumed

that there is only one mode near the frequency c, and n is the loaded

Q of the cavity mode. As described in Chapter III, we must allow for

different filling factors for the tvo components of 42 . By substituting

(5.9) into (5.18) and using this in conjunction vith (5.20) and (5.21),

we have

H2 1 + 4x f N g1 3 g 3 1 T1 3  4x f33)]"4 2 Vi I"g31 1 12

2LQ2

x 33 X ll) ) + - iX 2 - x (5.23)"3 11 T23 U• •2g2 " 1-2 22 3

where now we have assumed that the cavity is on resonance, fl is

defined as the filling factor for the component of M2  proportional to

H2  P f 2  is the filling factor for the component of 42 proportional

to 1 , and 2 is the loaded Q of the cavity. By defining the

magnetic Q of the sample at 2 , Q , as

1 4o N T13 e31 e)1 ( .2)
- - (5.24)

Eq. (5.23) becomes

H2 [1 + 2 f2 Vi t022H2[~...L2js~ p1 3(Xii %33~m 5 .)

i i

x •(• -x•)+L ---(-x• -L (). -•

(5..25)
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where 8 1 3 is a saturation parameter defined as

S . " (5.26)
813 e e

11 33

D. CHOICE OF 5

Let us now suppose that we are in a position to vary the value of

the energy E2 relative to a fixed value of E - E . In a paramag-

netic solid this can be done by varying the angle and magnitude of the

magnetic field relative to the crystal axes. We shall look for the value

or values of 8 which will maximize the nonlinearity of the system. This

maximization will occur, when for a fixed HI we maximize H2 , [Eq. (5.25)].

Let us first assume that the levels are equally spaced, 5 = 0 In

this case the term in brackets reduces to

.23(X - 22) - Ti (X22 - X33) (5.27)

If we now assume further that the linewidths of the two transitions are
equal, T23 = Tl2 , substitute for 1ll I X22 , and X33 from (5.11),

(5.12), and (5.131 and expand the Boltzmann term for the equilibrium

values, keeping only the linear termwe get for (5.27)

i YS
1(B - A) (5.28)

TI2 2 kT

We see that, under these assumptions, the nonlinear term is nonzero only

if B A A , which implies 11121 A 'g231 . Even if B A A , we see

that the term for 5 = 0 depends on the difference between quantities

and hence will not contribute significantly to the effect. We thus set

(5.27) equal to zero and the expression for H2 becomes

H[= 2f2ViiiP12A23 13 2 () (5.29)
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which is maximized for 8 = 1/r12 . Hence we find that the maximum

value for H occurs when E2 lies one linewidth from the value

(Z1 + E3)/2 , or alternatively, when the fundamental s±gnal at cD sees

both the transitions at a21 and a32 at their half-power points. Upon

setting 8 = i/h 1 2  ' we have for H2

"-f2 Vi Sl3 ' L12 023 r12

H2 1- +•. 1 "+ (5.30)

13 Qm13]

E. HARMONIC POWER

The power coupled out of the cavity may be found from the relation

U•, ) 1 -- 2
POW) - J- H dV

an2

where the bar signifies time average. By substituting from (5.30) into

(5.31), we obtain

2L f 2 8 2 (P T 21
2 f 13 (12 23 T 1 2 I)

P(2a) ,

- L132 Qe[ +1. +

(5.32)

where we have used 1/Q2 - 1/% + 1/Q . From (5.32) we see that the

apparent source Q is a parallel combination of the cavity Q and a

modified magnetic Q , the modification involving the filling factor
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and including the effects of saturation. The source Q is then

1 1 fS
+ (5.33)

,source % q2

The question of population inversion is the same as in the case of the

two-level system: if the population of levels 1 and 3 is in a normal

state, then the quantum system presents loss reducing the source Q ;

if levels 1 and 3 are inverted then GM becomes negative, the source

Q (5.33) is increased, and the possibility for oscillations exists.

Assuming that the external coupling is chosen to be optimum,

Qe = Qsource , our expression for the power becomes

2 2 2  4

P(O) 2 13 ("12 '23 12'2 H 1  source (5.34)
256,, t2 ,13 Qm2

We may consider the above under two special situations. If we are at

low power levels where there is no saturation, S1 3 = 1 , and the effec-

tive magnetic Q , Qm2/fl , determines the source Q , as would be

the case for efficient operation, we have for the power

2 2 4

w f2 v (g2 P23 T 1 2 ) HI

13 Qm2 1

while at high power levels the saturation reduces the loading of the

sample and we have Eq. (5.34) with Qsource ' QO

F. SATURATION

The phenomenon of saturation occurs when the populations of levels

1 and 3 tend to equalize and is described by the saturation parameter

S13 defined in Eq. (5.26). The exact value of S13 must be found from

(5.14) and will, in general,, be complicated. If, however, we make the
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nr ' l nl . .. .• . i Il li.

simplifying assumption that A - B , i.e., I,121.1,231 , then we
have

1

613 Ti 2 (5.36)
1 + T1 2 T

When the fundamental field strength is such that

H- 
2 2 (5.37)

i2 T1 1'12

then saturation will start to occur. If we examine the expression for

the output power (5.35) and Qm2 , (5.24), we see that the power is pro-
2

portional to T12 T and that we desire large T and T or narrow
12 13 12 13resonance lines. From (5.37) we see that to reduce saturation we desire

as small a value of TI2 T as possible. These two requirements point

out the important fact that we desire as small a value of T as is1
possible, consistent with a narrow linewidth. This requirement is in

sharp contrast to maser theory, where saturation and a large value of

T1 are desired.

Assuming that we reach saturatior4 by dropping the 1 in the

denominator of (5.36), we find for the saturated output power

Psat(2w) 162 2 2 2 (5.38)

or by substituting for Qm2 , Eq. (5.24),

X2 ~ c o f 2 V Q 0  1 ± 1 2 1 i 2  ( Xk 1  - ,P~ ea)2 1 3 3(-9
sat 2 • (T.39)
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I G. DEPENDENCE ON PARAMETERS OF THE SYSM

From this relation for the saturated power and the equivalent

expression for the low-level, nonsaturated case (5.35), we can examine

the dependence on the parameters of the atom and the cavity.

1. Filling Factor

First of all we see that the output power is proportional to the

volume of the cavity, V , and to the square of the filling factor, f2

defined in Eq. (5.22). The dependence on the square of the filling factor

emphasizes the importance of good circuit design.

2. Dipole Moments

The low-level expression (5.35) shows that the output is proportional

to the square of the dipole moments of the 1-2 and 2-3 transitions and

is independent of the moment of the 1-3 transition - the ý1 in the denom-

inator is cancelled by the same term in . The value of the moment

413 must be large enough to make 1Qi>l/% , however. We see that

we desire large dipole moments, especially at the 1-2 and 2-3 transitions.

In the saturated case the output is proportional to V and is inde-

pendent of g12 and g23 . We thus see that for high power operation,

a large g13 is extremely desirable. For this case L12 and P23 do

determine the applied power level necessary to cause saturation from

(5.37). The dependence on dipole moments is seen to be critical in both

cases. If paramagnetic substances were to be used, this strong dependence

on ýj would point to the use of materials with large effective spins.

3. Relaxation Times and Concentration

In (5.35) for the unsaturated case T1  , the longitudinal relaxa-

tion time does not appear. The transverse relaxation time appears in the
2

form T12 T - the latter factor is obtained from Q.2 The concen-
1213

tration, N , comes in linearly through Qn2 , and so at low power levels

a maximization of NT3 will result in the maximum nonlinearity. At

saturation power levels, the ratio T2 /T12 points out the desirability

of making T1 and T as nearly equal as possible (we have the restriction,

T1 > T , from the definition of these quantities). This less strict

condition on T1 should make possible the use of a wider class of mater-

ials than maser applications.
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Under saturation conditions we find that the power is proportional

to the square of the quantity NT . For high power operation NT should

be maximized; for low power levels, NT3  ! Since T generally

decreases with concentration, a large change in N usually results in a

less significant change in the product NT , although perhaps it results
3in a more important change in NT . We here neglect entirely the

effects of cross-relaxation.

4. Temperature Dependence

The last major dependence is that of temperature. In the formulation

it arises both in the temperature dependence of the relaxation times and in

the Boltzmann factor. In the latter case we have

e e
Vh aXII - X3 e 2

11 33 3 'T

assuming three levels only. The Boltzmann factor comes in through the

magnetic Q , yielding a lower value of Qm2 and hence a stronger non-

linear effect for lower temperatures. By again assuming low power levels,

where (5.35) applies, we see that P(2m) varies inversely as the first

power of T . For saturated conditions (5.39), the Boltzmsnn factor

introduces a factor of T-2 but the temperature dependence of T will

in most instances more than cancel the T"2 . Hence, low temperature

operation has the effect of increasing the magnitude of the nonlinearity

for low power levels while increasing the effects of saturation for high

power operation. For high power operation no advantage is gained by

operating below room temperature unless a material is used in which either

T is independent of temperature or where T also. increases with

decreasing temperature.

Low temperature operation may, however, be useful in another

application, namely mixing. If it were desired, for example, to down-

convert from a frequency aI to a lower frequency a)2 at low signal

levels, then a three-level system with suitably placed energy levels

could be used. Low temperature operation would increase the magnitude of

the nonlinearity as well as reduce circuit noise. The details of this

process will not be presented here.
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5. Nonresonant Behavior

Throughout this chapter we have assumed that 2w - l 3 . Such a

condition is not required for harmonic generation but does serve to

increase the magnitude of the nonlinear effect by reducing the resonance

denominator. By operating on resonance, the nonlinearity possesses a

resistive character, while off resonance it would be mainly reactive.

Another aspect of off resonance behavior is concerned with the

choice of B . Previously it was shown that 5 = 1/Ti2 gave the maximum

nonlinearity when saturation was ignored. If saturation is included, we

must compare the variation in the nonlinearity given by (5.29),

b S1 3

2••2 (T) (5.40)

with the more exact saturation expression for S1 3

1

S1 3  TI2 H2  (5.41)

1 + 
.12 1

12 [F2 +(1\21

In the limits of saturation we have

H 2 cx 5 T 12 (5.42)
T 1

which shows that the saturation power should increase with increasing 5

because the fundamental absorption responsible for saturation is reduced.

In the preceding discussion it has been assumed that the fundamental

field, H1  , is given and is continuously variable. In actual practice,

from an applications point of view, it will usually be the case that the

level of the fundamental power will be fixed. It is then desirable to

maximize the output power for a given input power by varying 5
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To do such a maximization mathematically would be an extremely involved

task due to the complicated dependence of the efficiency on 5

Specifically dependent on 5 are the Q at the fundamental (5.45), the

saturation (5.36) which affects the sousee Q (5.33),,the fundamental

Q (5.45) and the output power, (5.39) and finally the dependence not

specifically included in the analysis, (5.40). Such a maximization would

be most easily accomplished in practice by experimentally varying 5

for example, by altering the direction and magnitude of an applied

magnetic field.

H. FUNDAMENTAL ABSORPTION AND CAVITY LOADING

From Eqs. (5.19), (5°7), and (5.8), we have the magnetization at the

fundamental:

N g H1  i12) 1 5( ) + 2X 2 . ) + " ( X'n )
2 t, 2 + I Tl2(+12

(5.43)

where M+) is the component of Ml varying as eimt , and we have

again assumed 11 2 = p2 3  and T1 2 = T23 " The first term will, as

before, be small, leaving

+) i N ý2 (x x)
= ~ 1 2  1 12 33 11 (.4=i 2 h (1 + 52•2 T (24•

By using the cavity susceptibility, we find that the fundamental loading

of the cavity by the sample is given by a Q

1  f s )
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I
where

e e
1 23• N•.2I" X(X."

Qm~l

and f is the filling factor. From this we see that the loading is

reduced if the filling factor is small or if saturation has occurred, or

if the system is detuned, i.e., large 5 .

I. RATIO OF FIRST AND SECOND ORDER MAGNETIZATIONS

Upon taking the ratio of the magnitudes of the first and second

order magnetizations under the same assumptions leading to the derivation

of the power expressions, we find

M2 13 T13 H1 (5 .47~)

M 4ti H 1

For a magnetic dipole we have g - 1 0'20 , so

M2 62x1?

Ml 1

If a material had a linewidth corresponding to T13 0.5 X 106 , orI1f

around one megacycle, then for H1 = 1 oe the second order magnetization

is comparable to the first. For an electric dipole system 'with its much

larger dipole moments ýi - 108 , we would have for the ratio of the

polarizations

P E2P2,lO8 1
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Theoretical Harmonic Power Out: 5 = V/T
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FIG. 5.3--Theoretical harmonic power,
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If 13 were 10-7 sec, then for E - 0.1 esu or 30 volts/cm ,we

have P2 - P1 . An electric dipole system with the desired selection

rules and energy levels would thus display an enormous nonlinear effect.

J. EXAMPLE

As a brief example let us consider the use of ruby as the active

substance. A plot of the ground state S = 3/2 energy levels for Hdc

at 900 to the c-axis is shown in Fig. 5.2, where the curve is taken from

the analytical work of Chang and Siegman.65 The matrix elements are

calculated to be

L12 ' "23 = 2.1 4B

=13 1.15 4B ,

where ý'B is the Bohr magneton. We shall take N = 0.25 x 1020 spins/cm3 ;

then, from Strandberg, the linewidth corresponds to T = 0.4 x 10-8 sec.

The operating frequency is taken to be 9.5 kMc for the fundamental and 19.0

kMc for the harmonic. With the assumed spin-lattice relaxation times of

10-8 sec at 300°K, 10-7 sec at 77°K and 4 x 10-4 at 4.2°K and an

unloaded cavity Q of 5000, the output power as a function of fundamental

field strength is plotted for the three temperature ranges in Fig. 5.3.

The increase in low-level power at low temperatures and the effects of

saturation are clearly seen in this plot.

K. CONCLUSIONS

We have seen that the three-level system can act as a frequency

converter and in particular as a harmonic generator. The dependence on

the parameters of the system has been considered and in particular the

desire for a short spirrlattice relaxation time has been pointed out.

For microwave frequencies the system does not seem as well suited for

high power applications as does, for example, a ferrite, but at higher

frequencies, using materials with large spin and large crystal field

splittings or electric dipole transitions, this system may find use.

Perhaps the most useful application of this system would be as a low-level

mixer which was mentioned previously.
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S~ CHAPTER VI

t EXPERIMEAL EVIDENCE OF THIRD HARMONIC GENERATION IN A

TWO-LEVEL SYSTEM

The experiment described in this chapter was undertaken to complement

the theoretical work of Chapter III. The primary objective of the experi-

ment was to observe the harmonic generation effect, predicted by the theory

and previously unobserved, and, if observable, to obtain as much quantitative

and qualitative information as possible. The experiment was successful

inasmuch as the effect was indeed observed, giving harmonic powers in excess

of 10 milliwatts. The qualitative results generally agreed with predictions,

but the quantitative results, in particular the output power, were only in

fair agreement with theory.

A. THE OPERATING SUBSTANCE, NH3

The material used in the verification of the possibility of harmonic

generation In a two-level system was ammonia gas. Specifically, use was

made of the inversion transition occurring near 2 4 kMc. The use of ammonia

had several advantages: first, it is readily available and fairly easily

handled; second, there is extensive knowledge of its spectrum due to

previous spectroscopic studies; third, its spectrum displays a very strong

absorption line in the neighborhood of 24 kMc which is a convenient frequency

range with the equipment available.

It was further decided to perform the experiment for case IM where

the pump was applied near one-third of the natural frequency of 24 kMc,

putting the fundamental in the range of X-band and the third harmonic at

K-band.

B. THE CAVITY

In spite of the very strong absorption line in ammonia, the magnitude

of the predicted nonlinearity is such as to require a resonant system at

(')See Chapter III.
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both the fundamental and the harmonic; the "ormer is required in order to

get the required fundamental field strengths for reasonable power levels,

and the latter is required since the harmonic power output is proportional

to the cavity Q at the harmonic. The cavity must then be resonant at

w and 3w , preferably with high Q's at both frequencies, and must

have a region in which the electric fields at the two frequencies are

strong and essentially parallel.

The design decided upon was a re-entrant cavity similar to a fore-

shortened quarter-wave line with the interaction region near the gap. A

test cavity was built in which both the height of the cavity and the length

of the post were variable. Cold test measurements were made at various

frequencies and plots of cavity height vs post height were made for a

fixed resonant frequency. This was done both for frequencies near the

fundamental and near the third harmonic.

Finally, cavity dimensions giving simultaneous resonances at W and

3w were found by comparing the two sets of iso-frequency curves. An

intersection satisfying the desired conditions was found as the inter-

section of the foreshortened 3X/4 and foreshortened 9X/4 at the

fundamental and harmonic, respectively. A cross section of the cavity

is shown in Fig. 6.1 along with the pertinent dimensions.

The coupling to the cavity at both the fundamental and harmonic was

achieved by the use of magnetic loQps. These in turn were fed from a

small coaxial line with an OD of 0.094 in. It was necessary to construct

a coaxial-to-waveguide transition for the harmonic in order to be able

to work at K-band in the waveguide. The coupling loss at X-band was 1.5 db

and at K-band was 5 db, giving a net loss of greater than 6 db.

In order to permit the evacuation of the cavity, "0" rings were

inserted in the joint between the base and the top, as shown in Fig. 6.1.

The major source of vacuum problems in the caviLy resulted from leakage

along the center conductor of the coaxial coupling loops. The vacuum

conditions were satisfactory for short term operation, but over long periods

of time enough air would leak in to cause breakdown. This breakdown will

be discussed later.
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FIG. 6 .1--Cross section of the cavity.
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C. EXPERIMENTAL SETUP AND OPERATION

A schematic of the experimental setup is shown in Fig. 6.2. The

power source was a 2J5l magnetron operated with a 2 1isec pulse at 50 pps,
-4giving a duty cycle of 10 . After passing through a directional coupler

to lower the power level the signal was put through a low-pass filter in

order to remove magnetron harmonics. It was then passed through an

attenuator which was used to vary the level of the applied power. The

maximum available power kas about ,( i., ak. Both the indicent and reflected

power were monitored by crystal ctecectors and an E-H tuner was used to

match into the cavity.

On the output side (K-band) the coaxial to waveguide transition was

followed by a slide-screw tuner, a frequency meter, a precision attenuator

and a crystal dete(tor.

In all the experiments performed, the gas in the cavity was at a

constant pressure and was not circulated. In order to determine if the

source of the effect was some general property of the gas, dry nitrogen,

argon and air were also used in the experiment.

D. EXPERIMENTAL RESULTS

The experiment was performed using four gases; ammonia, air, dry

nitrogen, and argon. Only the ammonia gave any harmonic generation under

the desired operating conditions. The cavity was matched to the wave-

guide at the fundamental so that the reflected power was down 10 to 20

db from the incident. Under these circumstances output powers on the

order of 10 mw were observed at the third harmonic.

1. Breakdown

Operation at high power levels was frequently limited by breakdown

of the gas in the cavity. The input power level at which the cavity

broke down was a function of the gas, the operating pressure and the

condition of the cavity, especially the input loop. Once breakdown had

occurred, the cavity had to be disassembled astd cleaned before it could

be used again. In some runs maximum power (1 kw) could be applied to the

ammonia without breakdown, while in others slight air leaks caused break-

down at low power levels. That the breakdown was due to the air cuuld be
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power source was a 2J51 magnetron operated with a 2 gsec pulse at 50 pps,

-4giving a duty cycle of 10 . After passing through a directional coupler

to lower the power level the signal was put through a low-pass filter in
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On the output side (K-band) the coaxial to waveguide transition was

followed by a slide-screw tuner, a frequency meter, a precision attenuator

and a crystal detector.

In all the experiments performed, the gas in the cavity was at a

constant pressure and was not circulated. In order to determine if the

source of the effect was some general property of the gas, dry nitrogen,

argon and air were also used in the experiment.

D. EXPERIMENTAL RESULTS

The experiment was performed using four gases; ammonia, air, dry

nitrogen, and argon. Only the ammonia gave any harmonic generation under

the desired operating conditions. The cavity was matched to the wave-

guide at the fundamental so that the reflected power was down 10 to 20

db from the incident. Under these circumstances output powers on the

order of 10 mw were observed at the third harmonic.

1. Breakdown

Operation at high power levels was frequently limited by breakdown

of the gas in the cavity. The input power level at which the cavity

broke down was a function of the gas, the operating pressure and the

condition of the cavity, especially the input loop. Once breakdown bad

occurred, the cavity had to be disassembled end cleened before it could

be used again. In some runs maximum power (1 kw) could be applied to the

ammonia wiLhouL breakdown, while in others slight air leaks caused break-

down at low power levels. That the breakdown was due to the air could be
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FIG. 6.3--Experimental results for low preasure range.
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E. DISCUSSION

1. Qualitative

In general, most all of the experimental results qualitatively agree

with the theoretical predictions. First of all, for a fixed low input

power level the output power increases with pressure up to around 100 mm Hg,

after which it is relatively independent of pressure. This is in agree-

ment with the fact that the overall intensity of the ammonia line increases

with pressure due to the overlap of the broadened individual components

as explained in Chapter III, section H.4. This increase should continue

until the width of an individual component approximately equals the overall

frequency spread of these components. At the pressure of 100 mm Hg, the

full linewidth is 6 kMc, which includes most of the strong components of

the line, thus giving a good agreement.

Since the operation corresponds to 3w s Q , saturation should be

caused by the quantum system absorbing the generated harmonic power. In

this case the saturation denominator is of the form (1 + const TIT I6

where T2 = T and is inversely proportional to pressure and E1 is the

fundamental field strength. The saturation should then be minimized

(saturation denominator minimum) for higher pressures. A comparison of

the experimental curves shows this to be true, the effects of saturation

being minimum at the highest pressure examined, 300 mm Hg.

2. quantitative

A quantative comparison of the experimental results with theory, in

particular the magnitude of the harmonic power, is quite difficult because

of the large number of unknown factors in the experimental setup. The

most critical unknown is the filling factor, f 2  , which depends upon

the magnitude and orientation of the fundamental and harmonic fields within

the cavity. Because of the use of higher order modes and the irregular

geometry of the cavity, the filling factor is not known even approximately.

This is further complicated by the fact that the assumption that the

interaction occurs only in the gap region appears unjustified. Since the
2output power depends on f2  , this uncertainty is ma~gnified. We shall

then only be able to speak in order-of-magnitude terms.
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Calculating the field strength in the gap region from a knowledge
of R/Q , Q , and the dimensions of the gap gives a value equal to
200 esu at an input power level of 1000 watts. Assuming the interaction

to occur in the gap, as originally anticipated, the saturation should be

much larger than observed. Further, the power expected from fields of 200

esu is much larger than observed. Evaluating the fields in the other parts

of the cavity from a uniform field approximation yields numbers much more

in line with the observed output power levels and saturation. This then

points to the distinct possibility that the power is generated throughout

the cavity and not just in the interaction region. From the results

obtained by use of this cavity it is impossible to decide exactly where

the interaction takes place.

By assuming some order of magnitude values for the quantities involved,

we may make a comparison with theory. Assuming E1 = 50 esu for

Pin = 1000 watts, V = 6 cm3 , f2 = 0.1 , f1 = 1 , the power expected from

the cavity is (from Fig. 3.2, Chapter III) P(3w) = 250 mw , compared

to an observed value of 10 mw. Including the coupling losses of over

6 db, the disagreement is near 6 db, which is well within the limits of

the above assumptions.

F. CONCLUSIONS

From this work we can conclude that all evidence points to the

existence of the nonlinear effect predicted. The results do not, however,

allow a detailed comparison with theory because of the many experimental

uncertainties involved. In order to more fully understand the effect and

to compare experiment with theory, a much more detailed experiment should

be performed. For such an experiment the cavity should be of a regular

geometrical shape so that the field configurations are known analytically.

In this way both the filling factors and the magnitude of the fields may

be found. One possible cavity which might be used is one in which both

modes are TEM, such as the shorted coaxial line. For this case the filling

factor may approach 0.25. In a practical application, the Fabry-Perot

resonator would appear as the best cavity, yielding a high Q and large

volume.
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CHAPTER VII

EXPERIMENTAL EVIDENCE OF SECOND HARMONIC GENERATION

IN A THREE-LEVEL PARAMAGNETIC SYSTEM

In Chapter V, a theory was derived which suggested that it should

be possible to obtain a second-order nonlinearity in a three-level system.

Such a nonlinearity would allow the mixing of two frequencies wi and

w2 to obtain their sum and difference frequencies, a special case of which

is second harmonic generation. The detailed aspects of this process were

considered in Chapter V. Briefly, when the three levels are approximately

equally spaced and the selection rules allow transitions between all

three levels, then second harmonic generation may occur when the output

frequency, au , is equal to the frequency spacing of the extreme levels,

(E 3 - E1 )/11 . By using a paramagnetic ion as the active substance and

by varying the magnitude of the applied dc magnetic field as well as its

direction relative to the crystal axes, the above requirements can be

satisfied. Since this effect had not previously been experimentally

observed, a preliminary experiment designed as an attempt to observe the

effect was performed. This experiment and the results will now be

described.

A. MATERIAL: RUBY

The material used in the experiment was ruby. This was chosen

because of its availability and the fact that its spectrum is well known.

Chang and Siegman6 5 have calculated, from the known spin Ham•.itonian,

the energy levels and matrix elements, and the latter have been experi-66
mentally checked by Amiann. These calculations of Chang and Siegman

were used to choose the approximate operating point and no preliminary

spectroscopy was done to check their calculations. The ruby sample used

was borrowed from R. Morris, and was a cylinder of pink ruby 10 =m in

diameter and 2.5 mm high. The c-axis of the crystal was subsequently

found by X-ray diffraction techniques to lie 2.5 from the normal to the

crystal face.
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FIG. 7.1--Ruby sample used.

B. OPERATING POINT

Because of the limited availability of rf power sources the

operating frequency was chosen to be 9.5 kMc fundamental, and 19.0 kMc

harmonic. From Chang and Siegman, an operating point in ruby satisfying

the conditions mentioned above and corresponding to the frequency 9.5 kMc

should occur with the direction of the dc magnetic field at 90 to the

optical or c-axis with magnetic fields of the order of 2000 oersteds.

Denoting the ruby c-axis as 2 and the plane of H0 as the x-z plane,

then H0 is along the x-axis. The strongest matrix elements for the

fundamental interaction, corresponding to the 1-2 and 2-3 transitions,

are found to be along the y-axis, while those for the harmonic or 1-3

transition are along the dc field or x-axis, the same relative orientation

as in the case of second harmonic generation in a ferrite.

C. THE CAVITY

Because of the anticipated low level of the observed harmonic, it

was decided to perform z. hc experiment in a microwave cavity resonant at

both fundamental and harmonic in order to enhance the magnitude of the

effect. It was further decided to place the sample against the wall of

the cavity where the rf magnetic fields parallel to the vall would be

large. Because of the spatial orthogonality of the fundamental field

H1 and the resultant harmonic magnetic dipole moment M2 (2-) , it was
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necessary to choose cavity modes which. -ould have orthogonal H fields,

both of which were parallel to the wall where the sample was to be placed.

A piece of rectangular, X-band waveguide shorted at one end and aper-

ture coupled at both the fundamental and second harmonic was used as the

cavity (see Fig. 7.2). At the fundamental, the cavity was resonant in

the TE011 mode, while at the harmonic several closely-spaced modes were

available for use. Looking from the X-band aperture, the TM12 0 and

TM121 were among the suitable modes. In cold test without the ruby

sample, the frequencies of these modes were found to lie where they were

expected. With the ruby sample in the cavity, however, the modes near

the second harmonic were perturbed considerably and the precise deter-

mination of the mode configuratious was not possible. Since the sample

did not affect the X-band resonant frequency significantly (lying in the

weak electric field region) it was easy to arrange the dimensions for

fundamental resonance. In order to obtain the K-band resonance a movable

short was attached to the cavity and the sample was placed on the wall

near the short. Due to the large dielectric constant of the ruby (E - 10)

the K-band fields were drawn into this region and the tuner -was made more

effective. (Since this waveguide was cut off to the fundamental, it did

not affect the X-band resonance.) By this means, a 2:1 ratio of the

resonant frequencies was achieved. The loaded Q's at fundamental and

harmonic were both 300.

D. EXPERIMENTAL SETUP

A schematic drawing of the experimental setup is shown below in

Fig. 7.3. The power source was a 2J51 magnetron operated in a pulsed

mode with a pulse repetition rate of 60 pps and a pulse length of 0.38 4sec.

A shorting switch was used to measure both the incident power and the

power reflected from the cavity under operating conditions. A low pass

filter with a rated 40 db rejection was used to reduce the harmonics

generated from within the magnetron. A Varian magnet was used to provide

the necessary magnetic fields and a simple biased crystal detector was

used for detection of the harmonic output power. Under operating con-

ditions the cavity was matched in at the fundamental so that the reflected

power was 12 db below the incident.
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FIG. 7.2--Cutaway draving of the cavity.
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E. RESULTS

The following are the qualitative results of the experiment:

(a) Under the application of several kilowatts of X-band power at

9.503 kMe harmonic powers on the order of tens of microwatts were observed

at 19.006 ki4c.

(b) For a fixed level of input power the magnitude of the output

power was critically dependent on the magnitude of the applied magnetic

field and its angle relative to the crystal axis. No power was observed,

to within the level of the detection scheme, when the magnet was off

resonance. The width of these resonances was typically 20-30 oe.

(c) As the angle Q of the magnet relative to the crystal axis

was varied, the magnetic field at which optimum interaction occurred

changed in qualitative agreement with a curve of

E3 (9 , HO) - E1 (9 , HO) = const.

(d) For a fixed angle 9 there appeared three values of magnetic

field at which harmonic power occurred, two near 1900 oe and one near

1700 oe. The latter response was small compared to the other two.

F. INTERPRETATION

First of all, from the fact that the harmonic power observed was

critically dependent on the magnitude of the magnetic field and its

orientation, it is concluded that a nonlinear process within the material

itself is responsible for the harmonic generation. From the relatively

good agreement between the experimental operating conditions (particularly

the value of HO) and those predicted, it is felt that the nonlinear

process described in Chapter V is responsible.

The reasons for the relatively low efficiency are felt to be the

following: First and foremost is the fact that the filling factor, f

of the ruby is most probably very small. This arises from the fact that

the ruby sample was placed in the cavity so as to allow for enough tuning

at K-band to satisfy the 2:1 resonant frequency requirements, and not

placed bo as to attempt to maximize the filling factor. Since the output

power depends on the square of the filling factor, a small value of that

quantity would severely reduce the power out. From the sample dimensions

and the cavity size the filling factor is at most 0°03 and probably near

0.01.
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The second reason for lower e.0ficiency has to do with saturation.

Although the sample may not be oriented correctly relative to the funda-

mental and harmonic fields for optimum harmonic generation (small f ),
it will still absorb the fundamental power and will tend to saturate.

It is felt that saturation had started to occur prior to achieving detec-

table harmonic power levels at input power levels - 200 watts. In a

more detailed experiment it would be necessary to know the cavity fields,

in the presence of the ruby sample, quite precisely in order to optimize

the filling factor.

It snould be noted that the requirements on the orientation of the

cavity fields are more strict here than in the case of the maser. This

is a result of the fact that in a maser the pump signal saturates its

transition followed by the amplifying effect at the signal transition.

As such, both frequencies need only independently see strong transitions

in the crystal, typically in the x-y plane. In the case of harmonic

generation, the re-radiation of 2w photons occurs *imultaneously with

the absorption of two photons at w , and hence the relative orientations

in space of the fundamental and harmonic cavity fields is critical.

Since the nonlinearity and hence the magnitude of the harmonic

generated depends strongly on the location of the middle level relative

to the midpoint between the outer levels, and this in turn, for a fixed

S, is dependent on the operating point (Q , H0 , the power out will be

a critical function of the operating point. Unfortunately the location

of the c-axis was not known to within 3 so no precise knowledge of the

operating point was available.

Taking into account the above factors, it is felt that a careful

optimization would result in several orders of magnitude improvement in

the efficiency.

We may explain the appearance of three operating points where

harmonic generation occurred from the following argument: If the expres-

sion for the harmonic power were written in general terms where we do

not assume that 2a) = (E3 - E1)/t , then the expressions for output

power would contain a general denominator of the form

( ,o - S31) ( - Q21) (w - Q32) . This presents the possibility of three

points of resonant behavior, namely when 2w ' 3 = S121 '

a)) = 32 for fixed w . The dependence on angle and magnetic field
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of these three operating points is only approximately known and would

have to be investigated in detail experimentally. Qualitatively, however,

for o/2K - 9.5 kWe and 0 - 900 , the resonance conditions 2w 1

and co - 21 should be satisfied for magnetic fields differing only

slightly in value, while w - f32 will be satisfied for a much lower

value of H0 . These predictions are a consequence of an analysis of

the known data on ruby. The experimental data are again qualitatively in

agreement with these predictions. Here, as in the determination of the

magnitude of the power output, a precise knowledge of Ei(9 , H) is needed

for any measure of the quantitative agreement.

G. CONCLUSIONS

From the results of this experiment we can conclude that the predicted

nonlinezr effect does, in fact, exist, but that its magnitude appears

to be smaller than anticipated. An exact quantitative comparison was not

possible due to the large uncertainty in some of the parameters involved.

Such a quantitative experiment should be performed both to better check

the theory and to determine the feasibility of possible applications. In

such an experiment such things as tempurature and concentration dependence

as -ell as th1e effect of the location of the center level should be

examined. In particular, the prediction that optimum harmunic generation

occurs when the levels are not equally spaced should prove an interesting

check of the theory.

Other experimental work along this line could involve the use of

different materials with larger zero-field splittings for use at higher

frequencies as well as the examination of materials with faster spin-

lattice relaxation times to reduce the effects of saturation. Considera-

tion of processes other than harmonic generation, such as mixing, should

also prove interesting.
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CHAPTER VIII

CONCLUSIONS AID RECGMNDATIONS

The purpose of this research has been to study the phenomena of

nonlinear or multiple quantum effects and to discuss possible applications.

We have found that a quantum mechanical system with discrete energy levels

can behave in a nonlinear as well as in a linear manner. The nonlinear

effects occur as a result of interactions which involve more than a single

quantum of electromagnetic radiation, whereas the linear effect, used in

masers, is a single quantum effect. These multiple quantum phenomena

then make it possible to Use a suitable quantum system for nonlinear

applications.

A general discussion of multiple quantum phenomena and the mechanism

of indirect coupling responsible for the effect was presented in Chapter II.

Following this discussion, three specific applications were considered:

harmonic generation in a two-level system; parametric effects in a two-

level system; harmonic generation in a three-level system. Although these

are admittedly simple quantum systems, being at best an approximation to

the real case, their solutions do yield insight into more complicated

systems. Further, in many cases only a few levels will really be of

importance in an interaction and the problem can be simplified to a two-,

three- or perhaps a four-level problem soluble by the methods presented

here.

The general character of these phenomena differ from single quantum,

maser-like phenomena. In particular it is found that population inversion

is not required for many of the phenomena and that the saturation effects

are generally to be avoided. These requirements, along with the strong

dependence on the magnitude of the dipole moments involved, make the

criteria for the choice of materials different than for maser applications.

This may make possible the use of new materials and will require considerable

materials research.
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The ultimate application of these principles will probably be in the

millimeter wave to optical region of the spectrum, where at present suitable

nonlinear materials are not known. Using the nonlinear effects discussed

here, mixing, modulation, demodulation and other applications should be
possible at these frequencies.

Because of the fact that the study of this field is relatively new,

little has been done. There then exists much work to do in the future.

In particular, more experimentation is needed in order to verify the

quantitative aspects of the theory. Should these experimental results

appear as promising as the theory indicates, then many and various

applications can be considered. When this state is reached an intensive

study of materials will have to be made to find suitable ones for the

various desired applications.

In summary, this new field appears quite interesting scientifically,

both from the point of view of providing a better understanding of radiation

processes and from the application standpoint. Much research is needed,

however, before the ultimate feasibility of application is known.
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APPENDIX A

THE DENSITY MATRIX

It is the purpose of this appendix to familiarize the reader with some

aspects of the density matrix, in particular its description of the inter-

action of radiation with matter. No attempt will be made to prove the

relations stated; for those interested in proofs and further details,

references 67-71 may be consulted.

Let us suppose we have a series of possible states of the atom

which we may expand in terms of a complete set of kets in)

*i a in In) (A.1)

n

The expectation value of an operator Q in the state is defined as

< = <*i IQI~i> . (A.2)

In terms of the kets In) this may be written

La* a~ (niQim)(Q~i • in aim nlm

n,m

• aln ai Qn (A.3)

nm

where

S= (nIQIm) (A.4)
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R If the atom may be in one of a group of states with a probability

Swhere we have the obvious restriction

i

then the expectation value of the operator Q in the arbitrary state

is

(*'IQI*) = 0•i (Q)i , (A.6)
i

where we have taken into account the statistical behavior of matter as

well as the intrinsic statistical nature of quantum mechanics, Eq. (A-3).

By substituting Eq. (A.3) in Eq. (A.6), we obtain

(Q Z I i a*n aim Q. (A,7)
i n,m

Define the density matrix p as

Pmn j °i ain aim (A.8)

and then

(Q) Pmn Qnm (A.9)

n,m

By performing the sum over n , we have

(Q= (PQ)MM (A.10)

m

= Tr (pQ) , (A.11)
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which gives the prescription for finding the expectation value of an

observable.
We shall state, without proof, two additional properties of the

density matrix which we shall use:

(a) Tpr

or

Z Pnn 1 (A.12)

n

(b) p= = (A.13)

The first relation states that the sun of the diagonal elements is unity.

If we should use the energy representation where our kets are the eigenkets

of NO , the unperturbed Hamiltonian, then the numbers pnn may be

interpreted as occupation numbers of the various states, n , normalized

to a single molecule. In this representation it is easily seen that each

diagonal element is non-negative; this is true in general, however, for

any representation.

The second relation merely states that the density matrix is Hermitian.

This simplifies solving for the density matrix as it reduces by half the

number of off-diagonal elements to be found.

We should 1l1ce to now find the time development of the density matrix.

Let us divide the Hamiltonian into three parts:

N = N +A" +V . (A.14)

The first term is the Hamiltonian of the atom, including the possibility

of static magnetic fields, and is time-independent. The second term, N
shall represent the perturbation due to electromagnetic radiation. The

third term, V , represents the interaction between the atoms end the

lattice and between the atoms themselves and will give rise to spin-lattice

and spin-spin relaxation.
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By explicitly writing down the components of the density matrix,

taking their time derivatives, and using Schr~dinger's equation, the

equation of motion for p can be shown to be

Sit -- =•p , (A.15)

where [X,p] is the commutator of these quantities. We shall now assume

we are in the energy representation,

(NO) E 8 A.6o0) m •m ri , (A.16)

and shall for the time being neglect the interaction V in the Hamiltonian.

The equations then become

n =m

it6 = n -Pk. , (A.17)
k

and

n#m i (E E)P + 2 N (A.18)

i•6m (n " EmPm + (•nk Pkm - Pnk •km)" (.8

k

These equations suffer from the fact that they do not give the correct

equilibrium value for p in the limit -* 0 . It is shown in texts

on the subject that in thermal equilibrium the density operator is given

by

exp
p = (A. 19)

Tr exp( -0/16

From this expression we see that the off-diagonal elements are zero
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while the diagonal elements are given by

exp (- E n•/kT)

Pnn (A.20)

X exp (- EMT
m

From Eqs. (A.17) and (A.18) it is seen that if the system is perturbed

from equilibrium and the perturbation is removed, then Pn will remain

constant while pnm will oscillate sinusoidally with a frequency

S= (En - E )/i which is not in agreement with (A.19). The reason for

this is that the relaxation mechanisms which give rise to thermal

equilibrium have been neglected. As the exact nature of the perturbation

V is not known, its effects are usually phenomenologically added via

longitudinal and transverse relaxation times, Tij and i , respectively.

With the transverse relaxation times added, the off-diagonal equations

become

is6 + (E - En)Pm + -1 P (1nk1 Po - Pnk Pk) P (A.21)

nm k

where to satisfy hermiticity we require .nm By the insertion of

this relaxation term, prm is seen to decay to zero when • 0 , as

required by (A.19).

For the diagonal equations we introduce the trsasition probability,

Wij , defined as the probability per unit time that the system will make

a transition from state i to state j due to relaxation processes. The

diagonal equations then become

m= n V )

ilP = t ' (pkWkn~ -nn nk)
k

+ OinkPkn P k i )kn (A.22)

k
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In the absence of radiation fields, M -. 0 , we demand Onn tend to its

equilibrium value Pnne given by Eq. (A.19). At equilibrium we have n = 0nn nn
for all n , putting a condition on the relaxation terms

%~(Pe Wk Pe Wak)= ,all n . (A.23)
k

It is then assumed that the sum vanishes term by term, (the principle of

detailed balance) giving

pk Wk _ Pe Wn- =0 , all n, k (A.24)

We then define a relaxation time Tnk = Tkn by

e e
Pkck _ nnk . .. =nk 

(A.25)

In words, these two forms of relaxation times have the following interpre-

tation:

(a) The transverse relaxation time 'i., gives the decay time of the

term piij which is a measure of the correlation between states i and J

and is the usual T2  of paramagnetic resonance terminology. It is propor-

tional to the inverse of the linewidth of the transition i -+ J

(b) The longitudinal relaxation time Tij is a measure of the time

required for the transition i -+ j to thermalize with the lattice and is

the T1 of paramagnetic resonance.

We may make a simplification of Eq. (A.22) if we assume all longitudinal

relaxation times equal to T1 . In this case we have

"1 n nn = nk Pkn Pnkkni• + TAl(onn ) > M -P M (A.26)

1 k

Equations (A.21) and (A.22) constitute the density matrix formulation

of the interaction of radiation with matter. In principle, when solved,

they will give us all the information we need to analyze the problems

herein considered.
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APPENDIX B

RELATION BETWE THE DESITY MATRIX EQUATIONS

OF MOTION AND THE RATE EQUATIONS

Consider an M-level quantum mechanical system. The equations of

motion for this system in terms of the density matrix are

n-m:

M

i1.n 'ii X (Pk Wn -n p Wnk)
k=l

M

+ P ( -P~~~ ý , (B.1)

k=i

n m:

M

ibn + (E - E) p +-- -P.- ýnk X1) ' (B.2)
nm kwl

where the matrices are taken with respect to the eigenkets of the unper-

turbed Hamiltonian, X0 P (energy representation). The quantity Wkn

is the probability per unit time that the system will go from state k

to n due to relaxation mechanisms. The quantities T = T are the
transverse relaxation times which are related to the linewidth of a

Lorentzian line by T7 = 1/i( V , 'where A V is the full linewidthn"nm nm

at half intensity.

Let us assume that the applied perturbations vary sinusoidally in

time and that no more than one of these frequencies is near any allowed

transition. We may then write the perturbation in the form

Xn X" (emnkt + e'•wnkt) (B.3)
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where '%k "nk

nk E k(.4

Under these assumptions the solutions to (B.2) to first order in the

perturbation are

1L3 tS(Pm p P) e
P M M. (B.5)

Substituting (B.5) into (B.I) gives

M M

nn + (Pnn Wnk " P- k Wkn) 2 (Pkk Pnn) 22

kel k-I nk(nk nk)

(B.6)

By defining the quantities

r ~ ~ ~ n nk nkn __ _ __ _

the equations for the diagonal components become

M M

+ + Wnk pkk wkn) + Z (Pnn " Pkk) = 0 (B.8)Pnn- n

kol k=l

vhere the quantities Pnk represent the transition probabilities due to

the applied radiation fields.

(B)3y convention ve have -n a and -nk = •
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If ve consider a system containing N identical independent

systems, then the popu.attan density or the number of systems in the

level i in given by

n i " -Pi (B.9)

Mutiplying (B.8) by N and using (B.9) gives

K M,•i X (0 W'ik w - nk wki) + Z r ik (ni - nk) . 0 (B.10)

kui kui

which is recognized as the familiar rate equation. 2

Thus the rate equations are equivalent to the diagonal equations of

the density matrix.
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APPENDIX Cd

DERIVATION OF JAYNES' NEOCLASSICAL EQUATIONS FROM THE DENSITY MATRIX

Sequa ion 62
In shoving the equivalence between Jaynes' semiclassical equations

and formulation in terms of the density matrix we shall begin with the

equations of motion for a two-level quantum system neglecting the effects

of relaxation terms. Let the energy levels be as shown in Fig. C.I,

E)

h 2 1

'E1

FIG. C.l--Energy level diagram for a two-level system.

and take the form of the Hamiltonian to be

M12  21 E

22l 0 I - (C.1)

In the energy representation the equations of motion become

P = i (P2 P1) (C.2a)

: =-ii (p12 PI (c.2b)

-il -
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and

12 I nl2 i" (P22 - P11 ) (C.2c)

I • (Pn"P ). (c.2d)
621 + P 21 " 11 - P22

The expectation value of the dipole mnment M is given by

M = p = 12 + P2 1 ) (C.3)

where p = const = pI 2 = The energy of the unperturbed Hamiltonian

relative to a zero of energy lying midway between the levels is denoted by

W and is given by

w= = 2  n(p 22 -p11 ) (c.4)

The first derivatives of these quantities are found to be

= (12 + 62)

ai (P 12 - P21 ) (C.5)

and

ti a
=2 (622 -41)

=iE lP(p, 2 -P2 1 ) (c.6)

where we have used the equations of motion (C.2) to eliminate the time

derivatives. From (C.5) and (C.6) we may derive the first of Jaynes'

equations:

r=E.• . (c.7)
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Taking the time derivative of (C.5), we have

M = ifl • (p 1 2 " p2 1 )

12
S"(12 + P21)+( ( )

and by substituting from (C.3) and (C.4) we obtain

i • + a2 M W E (c.8)

These two equations, (C.7) and (0.8), constitute two of Jaynes' neoclassical

equations. The first, (C.7), states that the rate of increase in the

energy of the quantum system, W , is equal to the product of a field,

E , end a current M . The second, (C.8), describes the time develop-

ment of the dipole moment, M , which is seen to be the equation of an

undamped harmonic oscillator driven by the field E through a coupling

constant proportional to W . These form a set of coupled nonlinear

differential equations and have been proposed by Jaynes as a method of

studying the interaction of radiation with matter.

The third equation is simply a description of how the resultant

dipole moment M generates the fields E and may be written in many

forms. The one used in this paper is simply to define a complex cavity

susceptibility (X' = V - iX") and then to relate the dipole moment
c c c

M to the field E by

1- M (c.9)
c

We may phenomenologically add relaxation terms to (0.7) and (0.8) in

the following way. First consider (C.7) which describes the energy of

the system, and let the characteristic time in which it can exchange

energy with the "lattice," or thermalize, be T1 . Then in the absence

of a perturbation, E = 0 , the system will return to thermal equilibrium
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if we add a term (W - W)/T i v

W _ We - E (c.10)
T 1

The equation for M , may be altered to account for relaxation

mechanisms if we add a term 2T 2  in the form of a damping term. This

predicts a decay time of T2  for the dipole moment. The modified equation

is

2.
S• ~~~+-rM +C M =-.IE w • (~l

If we add the same terms to the density matrix we get the modified

equations including relaxation

(P -" ) e)
411 + 1 - (P21 - P1 2 ) (C.12a)

T 1 i1

l1 P 2+ 1 (P22 -P11) (C.12b)•12~ ~ " 1 2 111=" S

where we have included only one diagonal and one off-diagonal equation.

From these equations we find the following derived equations

S+ W _ We = E.(, + _l M) (C.13)
WW-• +• x - •w(c.l3)

Upon copi h ih +( + (C.24)

Upon comparing these with (C.10) and (C.11), we see that they differ

slightly in that they have additional terms proportional to l/T 2  and

(1/T 2 ) . This is not unexpected since the terms were added phenomenologically
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and cannot be expected to be valid when their effect is large. If T2

is not too small, we see that the additional terms are negligible since

the natural frequencies - 10 11 and T2  is typically 10-9 . By

neglecting small quantities we see that (C.13) and (c.14) are the same

as (C.1O) and (C.l1).

In studying the interaction of radiation with a two-level system

we can either use the density matrix equations (C.12) or Jaynes' equations

with relaxation added (C.1O) and (C.11).
72

It should also be mentioned in passing that Feynman, et al., have

shown that for the two-level system one can write the equations of motion

in general as:

co- x r , (C.15)

where

r = (rI , r 2 , r 3 ) (c.16)

S= (i ' ' 02 3 ) (c.17)

and

rl =P12 + P 21

r 2  i21 - P1 2 ) (C.18)

r3 P22 - P11

and

=i = (V1 2 + v211/h

w2 = i(V2 1 - V12 )/h (C.19)

•3=

No use will be specifically made of these equations in the form (C.15);

they are merely mentioned for completeness.
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APPENDIX D

DERIVATION OF THE ABSORPTION COEFFICIENT

If we have an electromagnetic field propagating with the velocity

c , the energy flow is given by the Poynting vector

S= ExH x (D-1)

which for E perpendicular to H is

IsI = c E2  (D.2)

Performing a time average results in

I cI = 2 E0 (ergs/cm 2) (D.3)

where we have assumed E = E0 cos Wt

If we have a sample which has a resonance at this frequency, the

density of power absorbed in the absence of saturation is

enNte T2 22

P = EO (ergs/cm3 ) (D.4)

2ti

Considering a volume 1 cm square and dz long, the power absorbed is

u .•e T ý 2 E2
dP 2  E0 dz (ergs) (D.5)

211
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The absorption coefficient is defiW,'l as

dP
d-z

Y ,-(D.6)

where-dP/dz is the power absorbed per unit length. Using (D.3) and (D.5)

in (D-.6) gives(l)

e T2c 4v NA~ T2 2

Y = - , (D.7)
c t

or

7 (D.8)c Q s

where Qs is the sample Q defined in Chapter III.

(1)See Gordy, et al. ,73 Eqs. (4.10), (4.14), and (4 .15a).
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